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Hex is PSPACE-complete

Summary. There are a number of board games such as Checkers [2],
Go [5], and Gobang [8], which are known to be PSPACE-hard. This means
that the problem to determine the player having a winning strategy in a
given situation on an n×n board of one of these games is as hard to solve
as any problem computable in polynomial space. PSPACE-completeness has
been previously proven for some combinatorial games played on graphs or by
logical formulas [1, 9].

In this paper we will show that the same holds for the game of Hex.
The crucial point of the proof is to establish PSPACE-hardness for a gen-
eralization of Hex played on planar graphs. This will be done by showing
that the problem of deciding whether a given quantified boolean formula in
conjunctive normal form is true, is polynomial time-reducible to the decision
problem for generalized Hex. In order to do this we will use methods which
were also used to prove PSPACE-completeness of planar Geography in [5].
Therefore our proof is quite different from the proof provided by Even and
Tarjan [1], who showed PSPACE-completeness of generalized Hex played on
arbitrary graphs. Since it is easy to see that the decision problem for Hex is
in PSPACE, the decision problem for Hex is PSPACE-complete.

0

The proof presented here continues in the style of proofs for other board
games. It will be shown that for the game of Hex, deciding which player
has a winning strategy in a given situation is PSPACE-hard. Similar proofs
are available for the games of Go1, Checkers2, and Gobang3. For Hex it is
furthermore true that determining which player has a winning strategy is in

1see [5]
2see [2]
3see [8]
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PSPACE, and is thus PSPACE-complete.
Hex is played on a rhombus-shaped grid, as shown in Fig. 1. The game,

invented in 1942 by the Danish physicist Piet Hein, is played according to
the following rules: two players, called “white” and “black” here, take turns
placing stones of their color on the grid points of the playing field. Opposing
pairs of edges of the playing field are assigned to each player, as indicated
by the labels in Fig. 1. The goal of each player is to connect his two edges
with a chain of stones of his color, and to block his opponent from connecting
his two sides. Placed stones may not be removed nor moved, and no grid
point may be occupied twice. The size of the playing field varies, normally
comprising 11 × 11 grid points, as shown in Fig. 1. When an edge of the
playing field is n grid points long, we will refer to the game as n×n Hex.

Figure 1: Schwarz=black; Weiss=white

The following theorem can be easily proved:

Fact 0.1 For all n: on an empty playing field, the first player has a winning
strategy in n× n Hex. 4

We will be considering playing situations in n×n Hex, where various
points on the playing field are occupied with white and black stones. Our
main result will be that determining which player has a winning strategy in
a given playing situation is PSPACE-complete.

4for proof, see [3]

2



I

Let A be a finite alphabet. We say that a function f : A∗→A∗

(

A∗ =
∞
⋃

i=0

An

)

is computable in polynomial space (or time) if there exists a determinis-
tic O(nk) tape-length-limited (or, respectively, time-limited) Turing machine
which calculates f . That is, for an input x ∈ A∗, f(x) can be calculated
using a O(|x | k)-length-limited portion of tape (or, respectively, in O(|x | k)
processing steps).

PSPACE (or P) refers to the class of languages L⊂A∗, whose characteris-
tic function chL :A∗→{0, 1} (chL(x)=1 ⇔ x∈L) is computable in polynomial
space (or time, respectively). A language L1 is said to be polynomial time
reducible to a language L2, notated as L1 ≤p L2, when there exists a function
f : A∗→A∗ computable in polynomial time, and f(x)∈L2 ⇔ x∈L. That is,
the problem of determining whether x ∈ L1 is “relatively easily” converted
into the analogous problem for L2.

5

If L0⊂A∗, and for all L∈ PSPACE: L ≤p L0, then L0 is termed PSPACE-
hard. A language L ⊂ A∗ is PSPACE-complete if L ∈ PSPACE and L is
PSPACE-hard.

II

We want to consider the decision problem for the following language.
n×n Hex situations should be encoded in a suitable manner by an Al-

phabet A; that is, the language of words that encode play situations should
be in P. In particular, the following subset of A∗ forms a language:

G(Hex) := {a ∈ A∗ | a is an encoding of a play situation in an
n×n Hex game, in which the player on the move (“white”) has a
winning strategy.}

We want to show the PSPACE-completeness of this language.
In addtion, we consider the following decision problem and corresponding

language:

5along with polynomial-time reducibility, the stronger logarithmic tape length re-
ducibility is often discussed; but we won’t be using it here
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CNF refers to the set of boolean formulas

f(x1, . . . , xn) =
m
∧

k=1

(

lk
∨

j=1

xk,j
ck,j

)

in conjunctive normal form.

(ck,j ∈{0, 1}; x0 = ¬x, x1 = x).

The set of boolean expressions F = Q1x1 . . . Qnxnf(x1, . . . , xn)
(Qi∈{∃,∀}) can be understood as a language on an alphabet A. Let

Q := {F =Q1x1 . . . Qnxnf(x1, . . . , xn) | f ∈ CNF, Qi∈{∃,∀}(1≤ i≤n)}

and:

Qe := {F ∈ Q | F is true}

The following theorem is true:

Fact II.1 Qe is PSPACE-complete.6

For the language G(Hex) we want to prove the theorem:

Theorem II.2 Qe ≤p G(Hex).

From this theorem follows:

Corollary II.3 G(Hex) is PSPACE-complete.

From the transitivity of the relation “≤p”, it follows from theorems II.1
and II.2 that G(Hex) is PSPACE-hard. Furthermore, it’s easy to see that
G(Hex) ∈ PSPACE, as the duration of play is limited by the count of open
grid points; that is, it is polynomially limited. At each move, each player on
an n×n board chooses from at most n2 different possible moves. The proof
of Corollary II.3 follows the line of reasoning by which it is generally proved,
that the decision problem for various combinatorial games is in PSPACE.
Details of such proofs can be found in [1,9] or in [7], p. 209ff.

6for proof, see [6]
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The crux of the proof of Theorem II.2 will be in the proof of a lemma
which deals with a generalization of Hex to undirected graphs. Hex can be
generalized to a game on undirected graphs in the following manner:

Given is an undirected, planar, and finite graph G = (V,E) with two
selected points, named s and t. These two points form an outside pair of the
graph, that is the graph G = (V,E ∪{s, t}) remains planar. Such an outside
pair has the characteristic that the corresponding graph can be embedded in
the plane (the space R

2) so that both points s and t are “accessible from the
outside”. We will hereafter refer to an planar graph with a selected outside
point pair as a Hex-graph.

On a Hex graph, Hex can be played according to the following rules: two
players take turns placing stones on the nodes of the graph (except for s and
t). One player places white stones; the other black. White plays first on an
empty board; his goal is to place white stones on a complete path between s

and t. The points s and t themselves are not played on. If “white” succeeds
in making the path, he has won; if stones placed by “black” prevent such a
path, black has won, as no stone may be moved or removed, and no point
may be played on twice. We will call this Hex game on graphs “graph-Hex”.

We will consider game situations in graph-Hex, that is, we require that
individual points on the Hex-graph have black or white stones placed on
them.

As is the case with game situations in n×n Hex, play situations in graph-
Hex can be encoded by an alphabet A, so that the language of words which
encode graph-Hex play situations is in P.

We define the following language:

G(graph-Hex) := {a∈A∗ | a is an encoding of a play situation in
graph-Hex, which satisfies conditions (II.1) and (II.2).}

(II.1) The player on the move (“white”) has a winning strategy.
(II.2) Each open point in the play situation is incident to at most three

edges in the Hex-Graph.

(Main-)Lemma II.4

Qe ≤p G(graph-Hex).

In [1], Even and Tarjan give a similar theorem for general, nonplanar
graphs, namely that deciding which player has a winning strategy at the start
of a graph-Hex game with two selected points s and t is PSPACE-complete.
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III

The proof for lemma II.4 will be done in stages. Its basic method follows the
proof of the theorem that generalized “Geography”, played on a bipartite
planar graph, is PSPACE-complete.

Generalized “Geography” is played on the nodes of a directed graph,
which has a selected point s. Two players alternately place stones on the
nodes of a graph, where the first player starts by playing on the selected
point s, and on subsequent turns play may only occur on nodes pointed to
by an arc that starts on the most recently played-upon node. The graph that
the game is played on should meet the following requirements:

(III.1) The graph G = (V,E) should be planar and bipartite. (The latter
means that the set of nodes V can be decomposed: V = V1 ∪V2; V1 ∩V2 = ∅
and E ⊂ (V1 × V2) ∪ (V2 × V1) ).
(III.2) Each node v ∈ V of the graph G = (V,E) is incident to at most three
edges, that is id(s) + od(s) ≤ 3. And in particular, for all nodes v ∈ V :
od(v) 6= 0; and for the point s: id(s) = 0, and od(s) = 1.

The player who has no more possible moves to make has lost the game.
From the rules of the game and the fact that the graph being played on is
bipartite, it immediately follows that the set of nodes V is decomposable
into two subsets V1 and V2 with the consequence that the first player only
can play on nodes in V1 and the second player only can play on nodes in
V2. A directed graph with the properties (III.1) and (III.2) will be called a
“Geography”-graph. Because the requirements (III.1) and (III.2) are usually
not imposed, for the sake of clarity we will speak of “Bipartite Geography”.

The “Geography”-graphs should be encoded in an alphabet A, so that—
as was the case in Hex and graph-Hex play situations—the language L =
{a ∈ A | a is an encoding of a “Geography”-graph} is in P.

Analogous to the definitions of G(Hex) and G(graph-Hex), let

G(“Bipartite Geography”) := {a ∈ A∗ | a is an encoding of a “Geography”-
graph, in which the player to move first in generalized “Geography” has a
winning strategy.}

The following fact can be proven using fact II.3:

Fact III.1 G(“Bipartite Geography”) is PSPACE-complete.
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The proof of the statement that G (“Bipartite Geography”) is PSPACE-
hard will be done in two steps. First: from a boolean expression F ∈Q, a
directed, not yet planar but bipartite graph is produced G = (V1 ∪· V2, E).
In a second step, the graph is made planar.

Given is a boolean expression Q1x1 . . . Qnxnf(x1, . . . , xn) = F ∈ Q.
Each variable xi in the expression F is represented in “Geography”-graphs
by a diamond of the form as shown in figures 2 and 3. Variables associated
with an existential quantifier are represented by diamonds as shown in figure
2, and variables associated with a universal quantifier are represented by
diamonds as shown in figure 3. These diamonds are linked in a chain, in this
case by identifying the points xi,2 and xi+1,0 with each other.

Each disjunction term in the boolean expression f(x1, . . . , xn)

f∨

k (xk,1, . . . , xk,lk) =

(

lk
∨

j=1

xk,j
ck,j

)

is represented with a node yk ∈ V2.
Edges lead from the nodes yk to the variable nodes xi,1 and x̄i,1, when the

value xi or ¬xi (respectively) appears in the disjunctiom term f∨

k (. . .). In
addition, a node t ∈ V1 is introduced with edges (xn,2, t) and (t, yk) to each
term-node yk. The game should begin on a node s ∈ Va, and there is an edge
(s, x1,0).

A graph constructed in this way consists of two pieces: the chain of
diamonds that represent the variables, and a formula portion. An example
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of a not-yet-planar “Geography”-graph, constructed according to a boolean
expression F ∈ Q, is shown in figure 4, for F = ∃x1∀x2∀x3(x2 ∨¬x3)∧ (x1 ∨
x3).

A “Geography”-game on a graph constructed as described is played first
in the chain of variable diamonds, and then in the formula portion, from
which the play leads back to a single variable diamond. By playing in the
variable diamonds, the variables take on specific 0 or 1 values; the variable
x1 takes on the value 1 (or 0) when the node x̄i,1 (or xi,1, respectively) is
played on. In subsequent play in the formula portion, the first player (who is
also called the ∃-player, as he determines the values of the variables bound
by existential quantifiers; the other player is then called the ∀-player) has a
winning strategy when the underlying expression (with specific values set by
already-played moves) is true, because only then must every term contain a
constant of value 1, thus the second player cannot play on a term-node yk

which has no free predecessor xi,1 (or x̄i,1, respectively). 7

Now we come to the second step of the proof. With the help of the fol-
lowing observations, one sees how a true “Geography”-graph can be obtained
from the graphs constructed so far.

1) Nodes that are incident to more than three edges can be replaced with
subgraphs. The cases shown in Fig. 5, Fig. 6, and Fig. 7 are relevant here.
We substitute the subgraphs in Fig. 5, Fig. 6, and Fig. 7 with others as
shown in Fig. 5a, 6a, and 7a. In those cases, if a ∈ Vj (j = 1, 2) ai ∈ Vj and
bi, ci, di ∈ V3...j .

7cf. [7, p.211ff] and [5 and 9]. Note also that what is considered a run-on sentence in
English is acceptable style in German.
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2) Only edges emanating from a term node yk can cross over one another.
In play on such a graph, only one of two intersecting edges can be played on,
and it may only be played on once; thus intersections as in Fig. 8 can be
replaced by subgraphs as in Fig. 8a.

With appropriate introduction of edges, we can achieve: 8

ci, f, di ∈ V1 and yr, ys, a, b, ei, y
′

r, y
′

s ∈ V2

.
If a player tries to block play from proceeding from yr to y′

x or from ys to
y′

x, he loses immediately. ¤

Remark III.2 The “Geography”-graphs generated by the procedure described
in the proof of fact III.1 have the characteristic that a game played on such a
graph is practiaclly decided by the points xi,1 or x̄i,1 in the variable diamonds

8For nodes yk that substitute for terms f∨
k

(. . .), it is always true that yk ∈ V2.
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(see Fig. 2 and Fig. 3), or by point ci in Fig. 8a; that is, by whether or not
the first player can play on such a point. We will call such points decision
points.

IV

In this section we will show the essential portion of the proof of theorem II.2,
the proof of lemma II.4.

Lemma IV.1 Qe ≤p G(Graph − Hex).

To prove this lemma, we need to provide a polynomial-time-limited reduction
procedure. This reduction procedure should be composed of three distinct
reduction steps:

a) In the first reduction step, for a given boolean expression F ∈ Q, a
planar and bipartite graph is constructed, on which the first player only has
a winning strategy when F is true, in accordance with the technique in the
proof of fact III.1.

b) In the second reduction step, the “Geography”-graph constructed
from expression F is converted into a playing situation on a (not yet pla-
nar, however) ‘Hex-graph’. In this playing situation, “white” should be
on the move and he should have a winning strategy only in those cases
where the first player on the “Geography”-graph has one. The conversion of
the “Geography”-graph proceeds by replacing subgraphs around individual
points of the “Geography”-graph with specific Hex-graphs, which then be-
come subgraphs of the new Hex-graph. The Hex-graphs are constructed so
that these individual subgraphs are played through in sequence in the style
of moves in “Geography”. Should a player deviate from these informal rules,
he risks losing in a few moves. In particular, that means that in a game on a
Hex-graph of this kind, “White” can only play such that he lays down a chain
of white stones starting at point s, whose direction “black” can influence in
individual subgraphs. By playing a chain of stones, a “Geography”-game is
simulated on Hex-graphs.

c) In the third reduction step, the graph generated in the first two steps is
made into a planar Hex-graph, and in particular, in such a way as to preserve
any existing winning strategy for a player.
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Whereas the reduction step a) in section III has already been explained
sufficiently, we need to explain steps b) and c).

About reduction step b):
First we want to consider some specific playing situations on Hex-graphs.

These playing situations have the characteristic that the course of play for
the next moves is already determined by the (partial) situations in a small
portion of the graph. When we say that “white” has a winning strategy on
a graph, we mean specifically that “white” has this winning strategy when
he is on the move.

As mentioned, subgraphs in “Geography”-graphs should be substituted
with special Hex-graphs. Some of the Hex graphs to be used are described
by the illustrations Fig. 9a, 10a, and 11a. (Use the portions remaining after
the subgraphs Gi(i = 1, 2, 3) are removed. See Fig. 9b, 10b, and 11b.)

For the playing situations in Fig. 9b, 10b, and 11b, the following state-
ments should hold true:

(IV.1) “White” is on the move and has to be able to occupy exactly one
path between the points s and t1 in the graph G1.

(IV.2) Each attempt by “white” to create a path from s to any point in the
subgraphs G2 or G3 without wanting to route the path through point t1 can be
thwarted by “black” by appropriate countermoves on points in the graph G1.
(“Black” is only forced to respond to moves by “white” on points in G1.)

(IV.3) “White” can lose within four moves, when he plays on a point in
the subgraphs G2 or G3.

(IV.4) “Black” can play such that “white” can only play on points in the
subgraphs G2 and G3 without risking a quick loss when he has played on a
complete path from s into one of these subgraphs. Similarly, “white” can play
such that in every response to white’s moves on points outside of G2 or G3,
“black” must also play on points outside of G2 or G3 (or else “white” wins
within two moves).

(IV.5) “Black” can play such that “white” can continue his existing chains
between points s and t1 only in the graphs G2 or G3. Black can either inter-
rupt a connection in the other partial graphs (G2 or G3) or a connection to t
via the point d, or play in such a way that any move by “white” which would
be necessary for such a connection can be rendered useless by a countermove.

(IV.6) In particular, for a game on the graphs in Fig. 9a, Fig. 10a and
Fig. 11a:
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(IV.6.1) In the graph in Fig. 9a, “white” can choose whether he wants to
achieve a connection in subgraph G2 or G3.

(IV.6.2) In the graph in Fig. 10a, “black” has the opportunity to determine
which of the subgraphs G2 or G3 in which “white” can make a connection.

(IV.6.3) In the graph in Fig. 11a, “white” can only make a connection in
the subgraph G2; “black” can obstruct a connection to G3.

While in (IV.1) and (IV.2), assumptions are made about the playing
situation in subgraph G1, the statements in (IV.3) through (IV.6) are to be
proven.

About (IV.3): We assume that “white” plays in a point in the subgraph
G2 or G3. “Black” then has the following options:

a) In the graph in Fig. 9a, “black” can win after a move to point n3 .
He only needs to respond to white’s moves as follows:

12



Move by “white”: n1 n2 n4 n5 n1a n2a n4a n5a s2 s3

Countermove by “black”: s2
n4 n2 (*) s3

n4a n2a (*) n1 n1a

(*) means that an arbitrary countermove is possible

To a further move by “white” to a point in G2, “black” can reply arbi-
trarily. By assumption (IV.2), “black” can win in this manner.

b) In the case of the graphs in Fig. 10a and Fig. 11a, it is obvious
that “black” can win after a move to point n1 . Again, this follows from
assumption (IV.2).

About (IV.4), (IV.5), and (IV.6): to prove these statements, we must
consider the possible course of play in the given graphs. To provide a survey
of various situations, we will examine the first moves in each case; that is,
we will consider the various possible moves “white” has in the graphs in
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Fig. 9a, 10a, and 11a, and black’s possible countermoves. Opportunities for
counterplay available to “black” in various situations are as follows:

*) “White” can make a connection from t1 into the subgraph G2, or
alternatively into the subgraph G3. Only the direct connection to t via the
point d is either interrupted or can be obstructed in subsequent play by
“black”.

**) “White” retains the option to make a connection from t1 to G2.
The connections to G3 and the direct connection to t via the point d are
either already obstructed by black stones or may be interrupted by “black”
in subsequent play. (If in the resulting situation “white” plays on a point
from G2 or G3, then “black” can ensure a win on his next move.)

***) The same situation applies as in **), except that “white” can make
a connection in the subgraph G3, and “black” can obstruct the other con-
nections.

****) “Black” can no longer prevent a win by “white”.
*****) “White” can no longer prevent a win by “black”.
As one sees, the assertions in (IV.4) and (IV.5) are correct in cases **)

and ***).

A) “White” has the following choices for moves on the graphs in Fig. 9a:
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Case 1: “White” plays on point n1 .
“Black” can then counter by:

1.1. playing on point n2 *) (this notation means that the situation described
under *) applies)

1.2. playing on point n3 **)

1.3. playing on point n4 *)

1.4. playing on any point other than n2 , n3 , or n4 : ****)

Case 2: “White” plays on point n1a . This case is symmetric to case 1.

Case 3: “White” plays on point n3 , n4 , or n4a . “Black” then has these
options:

3.1. countermove on n1 , n2 , or s2 **)

3.2. countermove on n1a , n2a , or s3 ***)

3.3. countermove on a still open point n3 , n4 , n4a , n5 , or n5a *). By
a countermove to n5 or n5a , “black” gives himself additional opportunities
to obstruct the play of “white” in the subgraphs G2 or G3, which can also be
achieved by playing a countermove directly into points in those subgraphs.

Case 4: “White” plays on point n5 , or n5a . *****)

Case 5: “White” plays on point n2 .
“Black” then has the following options:

5.1. countermove on n1 ***)

5.2. countermove on n3 **)

5.3. countermove on n4 *)

5.4. countermove on a point other than n1 , n3 , or n4 : ****)

Case 6: “White” plays on point n2a . This case is symmetric to case 5.

B) For the graph in Fig. 10a it is immediately clear that “white” must
play his first move on n1 , otherwise “black” will play there on the next
move, ensuring white’s defeat [because of (IV.2)]. Among the countermove
options “black” has to a move by “white” on n1 , there are essentially four
cases:

Case 1. “Black” plays on n4 . *)

15



Case 2. “Black” plays on n5 . ***)

Case 3. “Black” plays on n5a . **)

Case 4. “Black” plays on a point other than n4 , n5 , or n5a . ****)

C) The course of play on the graph in Fig. 11a is, to a certain degree,
forced. If a player deviates from the following sequence of play, the opponent
has the opportunity to decide the game in his favor on his next move: “white”
plays on n1 ; “black” plays on n2 ; “white” plays on n3 ; “black” plays on

n4 .

Notation. We want to introduce notations for the graphs in Fig. 9b, Fig.
10b, and Fig. 11b. The graph shown in Fig. 9b shall be called white decision
graph, the graph shown in Fig. 10b shall be called black decision graph, and
the graph shown in Fig. 11b shall be called meeting-point graph. To make
the following constructions more clear, we will symbolise the graphs shown
in figures 9b, 10b, and 11b with the illustrations in figures 9c, 10c, and 11c.

We need a fourth Hex-graph, to substitute for the subgraphs of the
“Geography”-graphs constructed in reduction step a) . This graph is shown
in figure 12a. (We use the portion of figure 12b that remains after subgraphs
G1 and G2 are removed.) We want to consider two different playing situations
in these graphs:

(IV.7) In the graph in figure 12a, “white” is on the move and has exactly
one path between the points s and t1 available for playing on in the subgraph
G1. Every attempt by “white” to make an unbroken chain of white stones
between s and a point in G2 that doesn’t pass through point t1 can be hindered
by appropriate countermoves by “black”. (“Black” is only required to respond
to moves by “white” in the partial graph G1.) In this situation, “white” would
be forced to play on s2, and “black” has to counter that move with a move to

n2 .

In the second play situation the following applies:

(IV.8) “White” is on the move and has been able to play a complete path
between s and r. Every other possible connection between s and t (besides
those that connect through r) is either already blocked by black stones or can
be blocked by “black” at any time. Then the following holds: If the situation

16



described in (IV.7) has occurred, then “white” can no longer win. If that
situation hasn’t occurred, we want to assume that the points n2 and n3
are not yet occupied. In that case, “black” can no longer block the connection
betwen s and t if “white” plays on n1 .

Notation. We will call the graphs in figure 12b decision graphs. We will also
call the graphs in figures 9b, 10b, 11b, and 12b elementary graphs.

We can now explain the reduction step b):
In reduction step a), for every given boolean expression F ∈ Q, we pro-

duced a bipartite planar “Geography”-graph G = (V,E), with V = V1 ∪· V2

and s∈ V1. The first player therefore plays only on nodes from V1 and the
second player only plays on nodes from V2.

By replacing the individual nodes of this “Geography”-graph with white
selection graphs, black selection graphs, meeting-point graphs, and decision
graphs, we will convert the “Geography”-graph into a Hex-graph.

1. Let v ∈ V2 and id(v)=1, od(v)=2 (see Fig. 13a). At such a point, the
choice of direction for the rest of the game falls to “white”. We subsitute
such a point with a white decision graph (see Fig. 9b).

2. Let v ∈ V1 and id(v)=1, od(v)=2 (see Fig. 13a). Here the choice of
direction for the rest of the game falls to “black”. We subsitute such a point
with a black decision graph (see Fig. 10b).
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3. Let v ∈ V2 and id(v)=2, od(v)=1 (see Fig. 13b). Such a point, which
appears in the “Geography”-graph as point xi,2 in variable diamonds (see
Fig. 2 and Fig. 3) and in intersections as point a (see Fig. 8a), is never a
decision point. Therefore we replace such a point with a meeting-point graph
(see Fig. 116 [sic]).

4. Let v ∈ V1 and id(v) = 2, od(v) = 1 (see Fig. 13b). Such a point, which
appears in the “Geography”-graph as point xi,1 or x̄i,1 in variable diamonds
(see Fig. 2 and Fig. 3) or as point ci (i = 1,2) in in intersections (see Fig.
8a). These very points are the decision points. Decision points should be
replaced by decision graphs (see Fig. 12b).

5. In the “Geography”-game, the points v in the graph for which id(v)=1
and od(v)=1 have the characteristic of not leaving the opponent different
move options after they are played on. The function of these points is solely
to alternate the play initiative, that is, the initiative to choose between the
two directions from points v with od(v) = 2. This assigning of the initiative
will be achieved in our Hex-graphs by building elementary graphs. Thus,
the function of these points falls away; it will be seen that we won’t need to
consider them further.

We must now explain how the individual elementary graphs, which should
replace the points of the “Geography”-graphs, should b connected with one
another.

If two points which are to be replaced by elementary graphs are connected
by an unbranched arc move (that is, all points contained in the arc other than
the endpoints are incident to only two arcs), then the two elementary graphs
are connected, and in particular one of the points s2 or s3 of the elementary
graph which stands for the beginning of the arc move is connected with an
edge to a point t1 or r of the elementary graph which stands for the end
of the arc move. Note that in decision graphs, the graph in the points t1

and r is not symmetric. For decision graphs in the variable diamonds, the
point r should be associated with the formula term; for decision graphs in
intersections (see Fig. 8a), the point r is associated with the elementary
graphs that substitute for di. [The embedding in a Hex-graph of a “variable
diamond” as in Fig. 14a (or intersection as in Fig. 15a) is shown in Fig. 14b
(and Fig. 15b, respectively).]

The resulting graph has many points collectively identified as t. (The
resulting graph is naturally not planar.) In the interconnection of the various
elementary graphs, only one point t1 remains which is not connected by an
arc with a point s2 or s3 of another elementary graph. This point t1 of the
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elementary graph, which replaces the point xi,0 of the “Geography”-graph,
becomes the point s of the complete Hex-graph.

On the now constructed Hex-graphs, Hex is played to a certain degree
according to “Geography” rules. The playing situation on these Hex-graphs
always matches those of the illustrations in Fig. 9a, Fig. 10a, 11a, or 12a,
as they are described in (IV.1) through (IV.8). This is obvious at the start
of the game. (The partial graph G1 is then composed only of the point s.)
Because of statement (IV.4) it can be seen that statements (IV.1) and (IV.2)
always remain true when the play crosses over into another elementary graph.

The play on our Hex-graphs proceeds in a manner such that, as already
mentioned, “white” lays down a chain of stones starting from point s, whose
direction “black” can only influence in the black decision graphs. In the
following manner, “white” (or “black”) has a winning strategy in this Hex-
graph, wenn the underlying boolean expression F ∈ Q is true (or, respec-
tively, false):
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(i) If F is true, then “white” can obtain a winning “Geography” strategy
in the following manner. In the individual elementary graphs, he always plays
to create a connection between the relevant point t1 to one of the points si (i
= 2,3). In the white decision graphs (see Fig. 9b), he can choose the point
si himself, and in the black decision graphs the point si can be determined
by “black” (see Fig. 10b). In the meeting-point graphs and decision graphs
there is practically no choice to be made (see Fig. 11b and Fig. 12b). It is
clear, how “white” ultimately can win in a decision graph.

(ii) If F is false, then “black” can likewise obtain his winning “Geography”
strategy as follows. He just needs to appropriately direct White’s play in the
black decision graphs. If “white” deviates from the informal “Geography”
rules, say by playing in one of the elementary graphs that had already been
played in, then according to (IV.2) “black” has the ability to obstruct “white”
from making further connections. If “white” plays in an elementary graph
in which he has no connection, then “black” can win according to (IV.3).

The “Geography”-game is simulated by a chain of white stones on the
Hex-graph.

We would like to explain the reduction step c):
In this reduction step, the not yet planar “Hex-graph” obtained in step

b) should be converted into a planar Hex-graph. Of special meaning for our
further procedure is the fact that the graph constructed so far is “nearly
planar”:

(IV.9) A Hex-graph constructed from a boolean expression according to
reduction steps a) and b) immediately becomes planar when all arcs incident
to point t are removed. That means, that if the graph is represented in the
plane, any arc crossing is between an arc incident to point t and an arc
between other points.

To obtain a planar graph, we change the labeling of the various points
of the elementary graph named t, referring to them instead as points ti

(i = 1, ..,m). We introduce a new point t, and the points ti should be
connected with this point t by paths. These paths, which we will call t-paths,
cross the other arcs. We will represent such crossings with yet-to-be-given
partial graphs; in so doing it must be guaranteed, that when “white” in some
way achieves a connection between s and the point ti of the most recently
played-on elementary graph, “white” can connect this point ti with t without
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difficulty. Otherwise the informal “Geography”-rules retain their validity.
Consider the play situation on the Hex-graph in Fig. 16, for which holds:

(IV.10) For the Hex-graph shown in in Fig. 16, statements (IV.1), (IV.2),
(IV.3), (IV.4), (IV.5), and a statement analogous to (IV.6.3) hold, so that
“white” can force a connection into the graph G3, while on the other hand
“black” can interrupt the connection to G2 and the direct connection to t via
the point d.

By the following argument one can be convinced of the validity of (IV.10):
In the situation described, “white” must play on the point n1 if he

doesn’t want to lose immediately. “Black” on the other hand then has the
following options:

Case 1. “Black” plays on n2 .
After this move the following sequence of play is forced (a player who

deviates therefrom can lose at the next move): “white” plays on n3 ; “black”
plays on n5 ; “white” plays on n4 ; “black” plays on n6 .

Case 2. “Black” plays on n5 or on n6 .
In this case, “white” can play on n2 and has a connection in both partial

graphs G2 and G3. “Black” must answer this move by playing on one of the
remaining free points n5 or n6 .

Case 3. “Black” plays on a point other than n2 , n5 or n6 .
In this case “black” can no longer avoid losing after “white” plays on n2 .

We use the Hex-graphs shown in Fig. 17a to illustrate crossings between
t-paths and arcs between other points. As one sees, we connect, in sequence,
three of the graphs that remain when the partial graphs G1, G2, and G3 in
Fig. 16 are removed. We thereby obtain a situation in which “white” can
still connect the points c and d as long as “black” can only play two of his
stones in these graphs. The graph shown in Fig. 17a shall be called a crossing
graph. Crossing graphs are the fifth kind of elementary graph we want to
use in our construction; in subsequent diagrams they will be symbolized as
in Fig. 17b, for the sake of simplicity.

Unfortunately, every possibility for connection between the points c and
d in a crossing graph is interrupted when stones are played along the chain
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a-s3. That means, a t-path is interrupted when stones are played along an
arc that crosses it. On the other hand, we are free to create several t-paths
from any point ti to t. It must only remain guaranteed that during the entire
play of the game up to that point, when play occurs in one of the elementary
graphs belonging to ti, an intact t-path from ti to t exists.
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The t-paths shall be constructed as follows. We assume that the Hex-
graph constructed in reduction steps a) and b) has the basic appearance
sketched out in Fig. 18.

a) t-paths R and L are laid down parallel to the chain of variable dia-
monds. Both paths R and L are directly connected to the point t.

b) Each variable diamond is connected to both paths R and L as shown
in Fig. 19a.

c) To explain how the points ti of the elementary graphs of the for-
mula portion are to be connected to t by t-paths, we now assume that the
“Geography”-graph obtained by reduction step a) didn’t have to be made
planar due to crossings as shown in Fig. 8a. Crossings as shown in Fig. 15b
(as opposed to those in crossing graphs) then play no role in our Hex-graphs
obtained by reduction step b).
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The formula portion is then in its basic form a binary tree, whose nodes
are white or black decision graphs. From the leaves, arcs lead into the chain
of variable diamonds. Parallel to each of these arcs we lay down t-paths
which are attached to the t-paths R and L. As Fig. 20 makes clear, every
node of the tree can be reached via such t-paths.

If reduction step a) required the introduction of crossings as in Fig. 8a,
then the problem of crossings between arc-moves which extend out from the
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leaves of the “tree” in the formula portion can be resolved in the manner
shown in Fig. 21a.

The construction described here produces the desired results (compare
this to the example in Fig. 22).

(i) One of the common t-paths (*) and (**) emanating from points tj1 and
tj2 in Fig. 19a must be intact during play in the variable diamonds, because
play as a rule only occurs along the right or left half of the diamond. If
“white” plays irregularly and tries to play along both halves of the diamond,
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that can only work to White’s disadvantage. R and L are at this point
completely intact in the locations (***), so that an intact t-path emanating
from tj1 and tj2 exists.

(ii) During play in the formula portion, the crossings of Fig. 21a can no
longer be played on. For the same reason, R and L are still intact at locations
(***). The points ti in the formula portion are therefore at the moment in
question connected to t by intact t-paths.

(iii) In a crossing in Fig. 21a, play can only occur along one of the paths
(A) or (B). One of the t-paths (*) or (**) therefore remains intact in that
location. As R and L are completely intact during play on such a crossing,
there exists an intact t-path from tk to t.

(iv) If game play ultimately occurs in one of the decision graphs of Fig.
12b, then there must still exist an intact t-path via R or L from the point ti

in the graph. R or L is only interrupted at a single location, because play
out of a formula portion can only occur along a path. This interruption in
R or L lies just outside the portion of R or L that is relevant to the t-path
from ti to t.

“White” and “black” have practically the same winning strategy on the
now planar Hex-graph as they had on the nonplanar graphs, except that play
might need to occur along the t-paths, on which “white” however can always
complete the desired connections. ¤

V

In this section we want to complete the proof of theorem II.1. We need only
prove the following lemma:

Lemma V.1 G(Graph − Hex) ≤p G(Hex)

For the proof of the lemma:
The problem of deciding which player has a winning strategy in a given

play situation on a Hex-graph can be reduced to the decision problem for
Hex, by representing the Hex-graph on a black-and-white grid on an n × n
Hex-board. This is possible, because every not-yet-played-on point on the
Hex-graph is incident to at most three arcs.

For such a representation of the Hex-graph, it is necessary to produce
an embedding of the graph in the space R

2, which can be achieved by the
algorithm given in [4]. Given an embedding of a Hex-graph, it is easy to
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obtain an embedding in which the points s and t of the outermost point pair
in fact lie outside; thus a Hex-situation can be generated from a Hex-graph
in the following manner:

The Hex-configuration has the appearance that on both of White’s (goal)
sides, all points but one on each side are occupied by black stones. On these
points lay white stones, which perform the function of the points s and t (see
Fig. 23). The representation of the graph proceeds along the lines of the
example in Fig. 24 and Fig. 25. Arcs are represented as shown in Fig. 24,
and unplayed-on nodes as in Fig. 24. How occupied nodes of any desired
degree are to be represented with white stones is readily evident from the
illustrations.

It is clear that in the Hex-situations obtained in this manner, play pro-
ceeds as it does in the original Hex-graphs.

If “black” has interrupted all connection opportunities between the white
sides, that means that “white” can no longer obstruct a connection between
the black sides. ¤
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