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What Happened this Week:  

- Looked at AND, OR, CHOICE, and CHAIN gadgets for different combinatorial games. 

- Explored Artificial Intelligence, a brief history of it, and how it relates to games. 

 

Gadgets 

 

Amazons: 

Amazons was invented by Walter Zamkauskas in 1988. Both human and computer 

opponents are available for Internet play, and there have been several tournaments, both for 

humans and for computers. 

 

Amazons has several properties which make it interesting for theoretical study. Like Go, 

it's endgames naturally separate into independent subgames; these have been studied using 

combinatorial game theory. Amazons has a very large number of moves available from a typical 

position, even more than in Go. This makes straightforward search algorithms impractical for 

computer play. As a result, computer programs need to incorporate more high-level knowledge 

of Amazons strategy. 

 

Amazons Rules: 

 Amazons is normally played on a 10x10 board. The standard starting position, and a 



typical endgame positions, are shown above. Each player has four amazons, which are immortal 

chess queens. White plays first, and play alternates. On each turn a player must first move an 

amazon, like a chess queen, and then fire an arrow from that amazon. The arrow also moves like 

a chess queen. The square that the arrow lands on is burned off the board; no amazon or arrow 

may move onto or across a burned square. There is no capturing. The first player who cannot 

move loses.  

 Amazons is a game of mobility and control, like Chess, and of territory, like Go. The 

strategy involves constraining the mobility of the opponent’s amazon, and attempting to secure 

large isolated areas for one’s own amazons. In the endgame shown in Figure 10-1, Black has 

access to 23 spaces, and with proper play can make 23 moves; White can also make 23 moves. 

Thus from this position, the player to move will lose.  

 

Basic Wiring: 

Signals propagate along wires, which will be necessary to connect the vertex gadgets. 

The figure 10-2(a) above shows the construction of a wire. Suppose that amazon A is able to 

move down one square and shoot down. This enables amazon B to likewise move down one and 

shoot down; C may now do the same. This is basic method of signal propagation. When an 

amazon moves backward (in the direction of input, away from the direction of output) and shoots 

backward, I will say that it has retreated.  

 10_2 (a) illustrates two additional useful features. After C retreats, D may retreat, freeing 

up E. The result is that the position of the wire has been shifted by one in the horizontal 

direction. Also, no matter how much space is freed up feeding into the wire, D and E may still 

only retreat one square, because D is forced to shoot into the space vacated by C.  

 10_2(b) shows how to turn corners. Suppose A, then B may retreat. Then C may retreat, 

shooting up and left. D may then retreat. This gadget also has another useful property; signals 



may only flow through it in one direction. Suppose D has moved and shot right. C may then 

move down and right, and shoot right. B may then move up and right, but it can only shoot into 

the square if just vacated. Thus, A is not able to move up and shoot up.  

 By combining the horizontal parity-shifting in Figure 10_2(a)  with turns, we may direct 

a signal anywhere we wish. Using the unidirectional and flow-limiting properties of these 

gadgets, we can ensure that signals may never back up into outputs, and that inputs may never 

retreat more than a single space.  

 

 Variable, AND, OR, CHOICE: 

 

 

The variable gadget is shown in Figure 10-3(a). If White moves first in a variable, he can 

move A down, and shoot down, allowing B to later retreat. If Black moves first, he can move up 

and shoot up, preventing B from ever retreating. The AND and OR gadgets are shown in Figures 

10-3(b) and 10-3(c). In each, A and B are the inputs, and D is the output. Note that, because the 

inputs are protected with flow limiters (Figure 10-2(a)), no input may retreat more than one 



square; otherwise the AND might incorrectly activate. In an AND gadget, no amazon may 

usefully move until at least one input retreats. If B retreats, then a space is opened up, but C is 

unable to retreat there; similarly if just A retreats. But if both inputs retreat, then C may move 

down and left, and shoot down and right, allowing D to retreat. Similarly, in an OR gadget, 

amazon D may retreat if and only if either A or B first retreats. 

The existing OR gadget also suffices as a CHOICE gadget, if we reinterpret the bottom 

input as an output: if B retreats, then either C or A, but not both, may retreat.  

 

Fanout: 

Implementing a FANOUT in Amazon’s is a bit trickier. The gadget shown in Figure 

10_4 above accomplishes this. A is the input; G and H are the outputs. First, observe that until A 

retreats, there are also no useful moves to be made. C, D, and F may not move without shooting 

back into the square they left. But if A retreats, then the unit and shoot two, but nothing is 

accomplished by this. But if A retreats, then the following sequence is enables: B down and 

right, shoot down; C down and left two, shoot down and left; D up and left, shoot down and right 

three; E down two, shoot down and left; F down and left, shoot left. This free up space for G and 

H to retreat, as required.  

 

Cross Purposes: 

 



 

Image from Games, Puzzles, and Computation by Robert Aubrey Hearn  

Variable, OR, CHOICE: 

 

The variable gadget is shown in Figure 10-11(a). If Vertical moves first in a variable, he 

can begin to propagate a signal along the output wire. If Horizontal moves first, he will tip the 

bottom stone to block Vertical from activating the signal.  

 The OR gadget is shown in figure 10-11(b). The inputs are on the bottom; the output is 

on the top. Whether Vertical activates the left or right, allowing Vertical to activate the output. 

Here we must again be careful with available moves. Suppose Vertical has activated the right 

input? After he tips stone B down, Horizontal will have no move; he will already have tipped 

stone A left. This would give Vertical the last move even if he were unable to activate the final 

AND gadget; therefore, we must prevent this from happening. We will show how to do so after 



describing the CHOICE gadget. As with Amazons the Konane, the existing OR gadget suffices 

to implement CHOICE, if we reinterpret it. This time the gadget must be rotated. The rotated 

version is showing in version 10-11(c). The input is on the left, and the outputs are on the right. 

When Vertical activates the inputs, and tips stone A down, Horizontal must tip stone B left. 

Vertical may then choose to propagate the signal to either the top or the bottom output; either 

choice blocks the other.   

 

Artificial Intelligence: 

 

Heuristics: Pattern matching that illicites a reasonable move. 

- What we would consider intuition in humans. 

- Artificial Intelligence utilizes some sort of pattern matching to decide the next move to 

play. 

 

Hand Scripted AI: Just checks conditions set by programmers. It doesn’t really learn. 

 

Learning AI: 

- Queue Learning 

- Artificial Neural Network 

- Monte Carlo Tree Search 

 

Queue Learning: 

- Simple, flexible, but limited because it required more user oversight. 

- Stems from the Markov Decision Process: 

- Given a choice of paths, choosing a correct one “rewards” the AI in some way. 

- If you have every possible state of a game, every move will put you in different 

state. 

- Q learning attempts to learn the value of being in a given state and making a 

specific action at this state. 

- In Figure 11 states are the green nodes and actions are the orange nodes. Each 

edge has a cost and each yellow arrow is a “reward” for using that edge which 

will serve to update q. 



 
Figure 11 

 

Process: 

- Set a table with States, Moves, and a variable q that will serve to show how desirable a 

move is. 

- Randomly set q; the output begins to stabilize as more reinforcement is introduced. 

- Having an update formula for q is necessary: 

 

 

Basic Formula: q = q + x where x = importance of q 

 

 

Problems with Queue Learning:  

- Table is often very large (large space complexity). 

- Not as fast as other methods. 

 

Good Tutorial on How to Use and Implement Queue Learning with a Neural Network: 

 

https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-0-q-

learning-with-tables-and-neural-networks-d195264329d0 

 

 

 

 

 

Neural Network: 

https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-0-q-learning-with-tables-and-neural-networks-d195264329d0
https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-0-q-learning-with-tables-and-neural-networks-d195264329d0


 

-Artificial neural networks (ANN) are systems for computing,  

-Loosely based on the mammalian brain, and on how neurons work.  

-Rely on interconnected elements which process inputs.  

-By approximating a desired output, the network can approach and help understand how 

some systems work.  

 

ANN's are good when: 

-Discovering regularities in a set of patterns 

-Data volume and diversity are very large 

-The relationship between variables is vaguely understood 

 -Relationships are hard to show using conventional approaches. 

 

An simple way to think of ANN's is seeing them as obscured functions, of which you can 

only observe outputs, from given inputs. If you give the obscure function many inputs, 

you could begin to notice patterns in the outputs. This way, using ANN's may help shed 

some light on obscured problems. 

 

Structure: 

-Artificial Neurons: These nodes are the building blocks of the networks. They take 

inputs, and generate an output.  

-The inputs have respective weights indicating their importance in the node's 

calculations. -They are summed into a weighted sum 

-If the sum meets the neuron's threshold value, or bias, the neuron may fire. 

 

 

 

 

 

 

 

-Layers: Neural networks are organized in layers. These layers process input which may 

come from past layers, or may be the original input handed to the system. This way, 

deeper layers can make more and more complex decisions based on their given inputs. 



Networks with many layers may become a means to engage in sophisticated decision 

making. 

  

-Input layer: Information supervisors give to the system. 

-Output layer: The result the system returns. 

-Hidden layers: Neither input nor output layers, just processinglayers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Monte Carlo Tree Search (MCTS): 

- MCTS is a method for making optimal decisions in AI problems such as in combinatorial 

games. It combines random simulations with a precision tree search. 

- Tree is built  node by node according to the outcomes of simulated playouts. 



 

Steps: 

1. Selection: starting at the root node, recursively select optimal child nodes until a leaf 

node is reached. 

2. Expansion: if the leaf isn’t a terminal node (not an end to the game) then create one or 

more child nodes and select one. 

3. Simulation: run a simulated playout form the selected not until a result is reached. 

4. Backpropagation: update the current move sequence with the simulation result.  

- Things to Keep in Mind: Each node must contain the estimated value based on simulation 

results and the number of times it has been visited. In its simplest and most memory 

efficient implementation MCTS will add one child node per iteration, but it is often 

beneficial to add more than one child node per iteration. 

 

Node Selection: 

- A node is chosen if it maximizes some quantity such as a return or reward. 

- Upper Confidence Bound formula generally used: 

 

 
- vi = estimated value of the node 

- C = tunable bias parameter 

- ni= number of times the node has been visited 

- N = number of times the node’s parent has been visited 

 

Other Implementation to Consider is UCB1: 

 

https://jeremykun.com/2013/10/28/optimism-in-the-face-of-uncertainty-the-ucb1-algorithm/ 

 

Tutorial on MCTS: 

 

https://jeffbradberry.com/posts/2015/09/intro-to-monte-carlo-tree-search/ 

 

Additional References: 

 

http://outlace.com/Reinforcement-Learning-Part-3/ 

 

https://medium.com/@harvitronix/using-reinforcement-learning-in-python-to-teach-a-virtual-

car-to-avoid-obstacles-6e782cc7d4c6 

https://jeremykun.com/2013/10/28/optimism-in-the-face-of-uncertainty-the-ucb1-algorithm/
https://jeffbradberry.com/posts/2015/09/intro-to-monte-carlo-tree-search/
http://outlace.com/Reinforcement-Learning-Part-3/
https://medium.com/@harvitronix/using-reinforcement-learning-in-python-to-teach-a-virtual-car-to-avoid-obstacles-6e782cc7d4c6
https://medium.com/@harvitronix/using-reinforcement-learning-in-python-to-teach-a-virtual-car-to-avoid-obstacles-6e782cc7d4c6


 

http://neuralnetworksanddeeplearning.com/chap1.html 

 

http://pages.cs.wisc.edu/~bolo/shipyard/neural/local.html 

 

 
 

http://neuralnetworksanddeeplearning.com/chap1.html

