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Coin-Moving Puzzles

Erik D. Demaine∗ Martin L. Demaine∗ Helena A. Verrill†

Abstract

We introduce a new family of one-player games, involving the movement of coins

from one configuration to another. Moves are restricted so that a coin can be placed

only in a position that is adjacent to at least two other coins. The goal of this paper

is to specify exactly which of these games are solvable. By introducing the notion

of a constant number of extra coins, we give tight theorems characterizing solvable

puzzles on the square grid and equilateral-triangle grid. These existence results are

supplemented by polynomial-time algorithms for finding a solution.

1 Introduction

Consider a configuration of coins such as the one on the left of Figure 1. The player is allowed
to move any coin to a position that is determined rigidly by incidences to other coins. In
other words, a coin can be moved to any position adjacent to at least two other coins. The
puzzle or 1-player game is to reach the configuration on the right of Figure 1 by a sequence
of such moves. This particular puzzle is most interesting when each move is restricted to
slide a coin in the plane without overlapping other coins.

Figure 1: Re-arrange the rhombus into the circle using three slides, such that each coin is slid to a
position adjacent to two other coins.

This puzzle is described in Gardner’s Mathematical Games article on Penny Puzzles [7],
in Winning Ways [1], in Tokyo Puzzles [6], in Moscow Puzzles [8], and in The Penguin Book
of Curious and Interesting Puzzles [11]. Langman [9] shows all 24 ways to solve the puzzle
in three moves. Another classic puzzle of this sort [2, 6, 7, 11] is shown in Figure 2. A final
classic puzzle that originally motivated our work is shown in Figure 3; its source is unknown.
Other related puzzles are presented by Dudeney [5], Fujimura [6], and Brooke [4].
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Figure 2: Turn the pyramid upside-down in three moves, such that each coin is moved to a position
adjacent to two other coins.

Figure 3: Re-arrange the pyramid into a line in seven moves, such that each coin is moved to a
position adjacent to two other coins.

The puzzles above always move the centers of coins to vertices of the equilateral-triangle
grid. Another type of puzzle is to move coins on the square grid, which appears less often
in the literature but has significantly more structure and can be more difficult. The only
published example we are aware of is given by Langman [10], which is also described by
Brooke [4], Bolt [3], and Wells [11]; see Figure 4. The first puzzle (H → O) is solvable on
the square grid, and the second puzzle (O → H) can only be solved by a combination of the
two grids.

Figure 4: Re-arrange the H into the O in four moves while staying on the square grid (and always
moving adjacent to two other coins), and return to the H in six moves using both the equilateral-triangle
and square grids.

In this paper we study generalizations of these types of puzzles, in which coins are moved
on some grid to positions adjacent to at least two other coins. Specifically, we address
the basic algorithmic problem: is it possible to solve a puzzle with given start and finish
configurations, and if so, find a sequence of moves. Surprisingly, we show that this problem
has a polynomial-time solution in many cases. Our goal in this pursuit is to gain a better
understanding of what is possible by these motions, and as a result to design new and
interesting puzzles. For example, one puzzle we have designed is shown in Figure 5. We
recommend the reader try this difficult puzzle before reading Section 5.3.1 which shows how
to solve it. Figures 6–9 show a few of the other puzzles we have designed. The last two
puzzles involve labeled coins.

This paper studies two grids in particular: the equilateral-triangle grid, and the square
grid. It turns out that the triangular grid has a relatively simple structure, and nearly all
puzzles are solvable. An exact, efficient characterization of solvable puzzles is presented in
Section 3. The square grid has a more complicated structure, requiring us to introduce the

2



Figure 5: A difficult puzzle on the square grid. The optimal solution uses 18 moves, each of which
places a coin adjacent to two others.

Figure 6: Another puzzle on the square grid. The optimal solution uses 24 moves, each of which
places a coin adjacent to two others.

Figure 7: Another puzzle on the square grid with the same rules.
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Figure 8: A puzzle on the square grid involving labeled coins. Solvable in eleven moves, each of
which places a coin adjacent to two others; see Figure 31.
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Figure 9: A puzzle on the equilateral-triangle grid involving labeled coins. Solvable in eight moves,
each of which places a coin adjacent to two others.

notion of “extra coins” to give a partial characterization of solvable puzzles. This result is
described in Section 5 after some general tools for analysis are developed in Section 4.

3



Before we begin, the next section defines a general graph model of the puzzles under
consideration.

2 Model

We begin by defining “token-moving” and “coin-moving” puzzles and related concepts. The
tokens form a finite multiset T . We normally think of tokens as unlabeled, modeled by all
elements of T being equal, but another possibility is to color tokens into more than one
equivalence class (as in Figure 9). A board is any simple undirected graph G = (P, E),
possibly infinite, whose vertices are called positions. A configuration is a placement of the
tokens onto distinct positions on the board, i.e., a one-to-one mapping C : T → P . We will
often associate a configuration C with its image, that is, the set of positions occupied by
tokens.

A move from a configuration C changes the position of a single token t to an unoccupied
position p, resulting in a new configuration. This move is denoted t 7→ p, and the resulting
configuration is denoted C / t 7→ p. We stress that moves are not required to “slide” the
token while avoiding other tokens (like the puzzle in Figure 1); the token can be picked up
and placed in any unoccupied position.

The configuration space (or game graph) is the directed graph whose vertices are con-
figurations and whose edges correspond to feasible moves. A typical token-moving puzzle
asks for a sequence of moves to reach one configuration from another, i.e., for a path be-
tween two vertices in the configuration space, subject to some constraints. A coin-moving
puzzle is a geometric instance of a token-moving puzzle, in which tokens are represented by
coins—constant-radius disks in the plane, and constant-radius hyperballs in general—and
the board is some lattice in the same dimension. If a token-moving or coin-moving puzzle
with source configuration A and destination configuration B is solvable, we say that A can
be re-arranged into B, and that B is reachable from A. This is equivalent to the existence
of a directed path from A to B in the configuration space.

This paper addresses the natural question of what puzzles are solvable, subject to the
following constraint on moves which makes the problem interesting. A move t 7→ p is d-
adjacent if the new position p is adjacent to at least d tokens other than the moved token
t. (Throughout, adjacency refers to the board graph G.) This constraint is particularly
meaningful for d-dimensional coin-moving puzzles, because then a move is easy to “perform
exactly” without any underlying lattice: the new position p is determined rigidly by the d
coin adjacencies (sphere tangencies).

The d-adjacency configuration space is the subgraph of the configuration space in which
moves are restricted to be d-adjacent. Studying connectivity in this graph is equivalent to
studying solvable puzzles; for example, if the graph is strongly connected, then all puzzles
are solvable.

Here we explore solvable puzzles on two boards, the equilateral-triangle grid and the
square grid. Because these puzzles are two-dimensional, in the context of this paper we call
a move valid if it is 2-adjacent, and a position a valid destination if it is unoccupied and
adjacent to at least two occupied positions. Thus a valid move involves transferring a token
from some source position to a valid destination position. When the context is clear, we will
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refer to a valid move just by “move.” A move is reversible if the source position is also a
valid destination.

3 Triangular Grid

This section studies the equilateral-triangle grid, where most puzzles are solvable. To state
our result, we need a simple definition. Associated with any configuration is the subgraph
of the board induced by the occupied positions. In particular, a connected component of a
configuration is a connected component in this induced subgraph.

Theorem 1 On the triangular grid with the 2-adjacency restriction and unlabeled coins,
configuration A can be re-arranged into a different configuration B precisely if A has a valid
move, the number of coins in A and B match, and at least one of four conditions holds:

1. B contains three coins that are mutually adjacent (a triangle).

2. B has a connected component with at least four coins.

3. B has a connected component with at least three coins and another connected component
with at least two coins.

4. There is a single move from A to B.

The same result holds for labeled coins, except when there are exactly three coins in the
puzzle, in which case the labelings and movements are controlled by the vertex 3-coloring of
the triangular grid.

Furthermore, there is a polynomial-time algorithm to find a re-arrangement from A to
B if one exists. Specifically, let n denote the number of coins and d denote the maximum
distance between two coins in A or B. Then a solution with O(nd) moves can be found in
O(nd) time.

The rest of this section is devoted to the proof of this theorem. We begin in the next
subsection by proving necessity of the conditions: if a puzzle is solvable, then one of the
conditions holds. Then in the following subsection we prove sufficiency of the conditions.

3.1 Necessity

Of course, it is necessary for A to have a valid move and for A and B to have the same
number of coins. Necessity of at least one of the four conditions is also not difficult to show,
because Conditions 1–3 are so broad, encompassing most possibilities for configuration B.

Suppose that a solvable puzzle does not satisfy any of Conditions 1–3, as in Figure 10.
We prove that it must satisfy Condition 4, by considering play backwards from the goal
configuration B. Specifically, a reverse move takes a coin currently adjacent to at least two
others, and moves it to any other location. Because the puzzle is solvable, some coin in
configuration B must be reverse-movable, i.e., must have at least two coins adjacent to it.

5



Thus, some connected component of B has at least three coins. Because Condition 2 does
not hold, this connected component has exactly three coins. Because Condition 1 does not
hold, these three coins are not connected in a triangle. Because Condition 3 does not hold,
every other component has exactly one coin.

Hence, one component of B is a path of exactly three coins, say c1, c2, c3, and every other
component of B has exactly one coin, as in the left of Figure 10. Certainly at this moment
c2 is the only reverse-movable coin. We claim that after a sequence of reverse moves, c2 will
continue to be the only reverse-movable coin. If we removed c2, then every coin would be
adjacent to no others. Thus, if we reverse move c2 somewhere, then every other coin would
be adjacent to at most one other (c2). Hence, it remains that only c2 can be reverse moved.

c1 c2 c3

c2

Figure 10: Reverse-moving a configuration B that does not satisfy any of Conditions 1–3.

Therefore, if we can reach A from B via reverse moves, we can do so in a single reverse
move of c2 directly to where it occurs in A. Thus Condition 4 holds, as desired.

3.2 Sufficiency

Next we prove the more difficult direction: provided one of Conditions 1–3 hold, there is a
re-arrangement from A to B. (This fact is obvious when Condition 4 holds.) All three cases
will follow a common outline: we first form a triangle (Section 3.2.1), then maneuver this
triangle (Section 3.2.2) to transport all other coins (Section 3.2.3), and finally we place the
three triangle coins appropriately depending on the case (Section 3.2.4).

3.2.1 Getting Started

It is quite simple to make some triangle of coins. By assumption, there is a valid move from
configuration A. The destination of this move can have two basic forms, as shown in Figure
11. Either the move forms a triangle, as desired, or the move forms a path of three coins.
In the latter case, if there is not a triangle already with a different triple of coins, a triangle
can be formed by one more move as shown in the right of the figure.

c

c

Figure 11: Two types of valid destinations for a coin c. In the latter case, we show a move to form
a triangle.

This triangle T0 suffices for unlabeled coin puzzles. However, for labeled coin puzzles, we
cannot use just any three coins in the triangle; we need a particular three, depending on B.
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For example, if B satisfies Condition 1, then the coins forming the triangle in B are the coins
we would like in the triangle for maneuvering. To achieve this, we “bootstrap” the triangle
T0 formed above, using this triangle with the incorrect coins to form another triangle with
the correct coins. Specifically, if we desire a triangle using coins t1, t2, and t2, then we move
each coin in the difference {t1, t2, t3} − T0 to be adjacent to appropriate coins in T0. There
are three cases, shown in Figure 12, depending on how many coins are in the difference. If
ever we attempt to move a coin to an already occupied destination, we first move the coin
located at that destination to any other valid destination.

t1 t2 t2

t3t3 t1 t1

t2 t3

Figure 12: The three cases of building a triangle {t1, t2, t3} out of an existing triangle, depending
on how many coins the two triangles share. From left to right, zero, one, and two coins of overlap.

3.2.2 Triangle Maneuvering

Consider a triangle of coins t1, t2, and t3. The possible positions of this triangle on the
triangular grid are in one-to-one correspondence with their centers, which are vertices of the
dual hexagonal grid. Moving one coin (say t1) to be adjacent to and on the other side of
the others (t2 and t3) corresponds to moving the center of the triangle to one of the three
neighboring centers on the hexagonal grid. Thus, without any other coins on the board, the
triangle can be moved to any position by following a path in the hexagonal grid.

This approach can be modified to apply when there are additional obstacle coins; see
Figure 13 for an example. Conceptually we always move one of the triangle coins, say ti, in
order to move the center of the triangle to an adjacent vertex of the hexagonal grid. But if
the move of ti is impossible because the destination is already occupied by another coin gi,
then in fact we do not make any move. There will be a triangle in the desired position now,
but it will not consist of the usual three coins (t1, t2, and t3); instead, ti will be replaced
by the “ghost coin” gi. Such a triangle suffices for our purposes of transportation described
in Section 3.2.3. One final detail is how the ghost coins behave: if we later need to move a
ghost coin gi, we instead move the original (unmoved) coin ti. Thus ghost coins are never
moved; only t1, t2, and t3 are moved during triangle maneuvering (even if coins are labeled).

3.2.3 Transportation

Triangle maneuvering makes it easy to transport any other coin to any desired location.
Specifically, suppose we want to move coin c /∈ {t1, t2, t3} to destination position d. If d is
already occupied by another coin c′, we first move c′ to an arbitrary valid destination; there
is at least one because the triangle can be maneuvered. Now we maneuver the triangle so
that the (potentially ghost) triangle has two coins adjacent to d, so that the third coin is
not on d, and so that the triangle does not overlap c. This is easily arranged by examining
the location of c and setting the destination of the triangle appropriately. For example, if c
is within distance two of d, then there are four positions for the triangle that are adjacent
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Figure 13: An example of triangle maneuvering. Dotted arrows denote conceptual moves, and solid
arrows denote actual moves.

to d and do not overlap c; otherwise, the triangle can be placed in any of the six positions
adjacent to d. Finally, because d is now a valid destination—it is adjacent to two coins in
the triangle—we can move c to d.

t1

d

t2

t1

t3

t2

cd t3

c

Figure 14: Transporting coin c to destination d using triangle {t1, t2, t3}. In both cases, we choose
the location of the triangle so that it does not overlap c.

By the properties of triangle maneuvering, this transportation process even preserves
coin labels: the only actual coins moved are t1, t2, t3, c, and possibly a coin at d. But any
coin at position d must not have already been in its desired position, because d is c’s desired
position. Thus, applying the transportation process to every coin except t1, t2, and t3 places
all coins except these three in their desired locations.

3.2.4 Finale

Once transportation is complete, it only remains to place the triangle coins t1, t2, and t3
in their desired locations. By the bootstrapping in Section 3.2.1, we are able to choose the
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unplaced coins {t1, t2, t3} however we like. This property will be exploited differently in the
three cases.

Property 1. If there is a triangle in B, then we choose these three coins as the unplaced
coins t1, t2, and t3, and use them to transport all other coins. Then we maneuver the triangle
{t1, t2, t3} exactly where it appears in B. Because all other coins have been moved to their
proper location, in this position the triangle will not have any ghost coins.

However, it may be that the coins {t1, t2, t3} are labeled incorrectly among themselves,
compared to B. Assuming there are more than three coins in the puzzle, this problem can
be repaired as follows. We maneuver the triangle so that it does not overlap any other coins
but is adjacent to at least one coin c; for example, there is such a position for the triangle
just outside the smallest enclosing hexagon of the other coins. Refer to Figure 15. Now two
coins of the triangle, say t1 and t2, are adjacent to three other coins each: each other, t3, and
c. Thus we can move t1 to any other valid destination, and then move t2 or t3 to replace it.
Afterwards we can move t1 to take the place of t2 or t3, whichever moved. This procedure
swaps t1 and either t2 or t3. By suitable application, we can achieve any permutation of
{t1, t2, t3}, and thereby achieve the desired labeling of the triangle.

t1 t3

t1

t2c t2

t3

c

t1

t2t3

c

t3

c

t2

t1

Figure 15: Swapping coins t1 and t2 in a triangle, using an adjacent coin c.

Property 2 but not Property 1. Refer to Figure 16. If there is not a triangle in B,
but there is a connected component of B with at least four coins, then there is a path in
B of length four, (p1, p2, p3, p4). From B we reverse move p2 so that it is adjacent to p3

and p4. If this position is already occupied by a coin c, we first reverse move c to any other
unoccupied position. Now p2, p3, and p4 are mutually adjacent, so we have a new destination
configuration B′ with Property 1. As described above, we can re-arrange A into B′. Then
we undo our reverse moves: move p2 back adjacent to p1 and p3, and move c back adjacent
to p3 and p4. This procedure re-arranges A into B.

c

p1

p2

p1

c

p2 p3p4p3 p4

c

p1 p4p3p2

Figure 16: Reverse moving a configuration B with Property 2 into a configuration with Property 1.

Property 3 but not Property 1. This case is similar to the previous one; refer to Figure
17. There must be a path in B of length three, (p1, p2, p3), as well as a pair of adjacent coins,
(q1, q2), in different connected components of B. If both positions adjacent to both q1 and q2
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are already occupied, we first reverse move one such coin (call it c) to an arbitrary unoccupied
position. This frees up a position adjacent to q1 and q2, to which we reverse move p2. Now
{q1, q2, p2} form a triangle, so Property 1 holds, and we can reach this new configuration B′

from A. Then we undo our reverse moves: move p2 back adjacent to p1 and p3, and move c
back adjacent to q1 and q2. This procedure re-arranges A into B.

p2p1p3p1 p2

c

q1 q2

c

q1 q3p3

c

p2

q1 q2p3p1

Figure 17: Reverse moving a configuration B with Property 3 into a configuration with Property 1.

This concludes the proof of Theorem 1.

4 General Tools

In this section we develop some general lemmas about token-moving puzzles. Although we
only use these tools for the square grid, in Section 5, they apply to arbitrary boards and
may be of more general use.

4.1 Picking Up and Dropping Tokens

First we observe that additional tokens cannot “get in the way”:

Lemma 1 If a token-moving puzzle is solvable, then it remains solvable if we add an addi-
tional token with an unspecified destination, provided tokens are unlabeled. This result also
holds if all moves must be reversible.

Proof: A move can be blocked by an extra token e at position p because p is occupied and
hence an invalid destination. But if ever we encounter such a move of a token t to position p,
we can just ignore the move, and swap the roles of e and t: treat e as the moved version of t,
and treat t as an extra token replacing e. Thus, any sequence of moves in the original puzzle
can be emulated by an equivalent sequence of moves in the augmented puzzle. We are not
introducing any new moves, only removing existing moves, so all moves remain reversible if
they were originally. 2

This proof leads to a technique for emulating a more powerful model for solving puzzles.
In addition to moving coins as in the normal model, we can conceptually pick up (remove)
a token, and later drop (add) it onto any valid destination. At any moment we can have
any number of tokens picked up. While a token t is conceptually picked up, we emulate any
moves to its actual position p as in the proof of Lemma 1: if we attempt to move another
token t′ onto position p, we instead reverse the roles of t and t′. To drop a token onto a
desired position p, we simply move the actual token to position p if it is not there already.

Of course, this process may permute the tokens. Nonetheless we will find this approach
useful for puzzles with labeled tokens.
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One might instead consider the emulation method used implicitly in Section 3.2.2 for
triangular maneuvering: move original coins instead of ghost coins. This approach has the
advantage that it preserves the labels of the coins. Unfortunately, the approach makes it
difficult to preserve reversibility as in Lemma 1, and so is insufficient for our purposes here.

4.2 Span

The span of a configuration C is defined recursively as follows. Let d1, . . . , dm be the set of
valid destinations for moves in C. If m = 0, the span of C is just C itself. Otherwise, it
is the span of another configuration C ′, defined to be C with additional tokens at positions
d1, . . . , dm. If this process never terminates, the span is defined to be the limit, which exists
because it is a countable union of finite sets.

Figure 18: In this example, the span is the smallest rectangle enclosing the configuration.

The span of a configuration lists all the positions we could hope to reach, or more precisely,
the positions we could reach if we had an unlimited number of extra tokens that we could
drop. In particular, we have the following:

Lemma 2 If configuration A can be re-arranged into configuration B, then span A ⊇ B and
thus span A ⊇ span B.

In other words, valid moves can never cause the span of the current configuration to
increase. Thus the most connected we could hope the configuration space to be is the
converse of Lemma 2: for every pair of configurations with span A ⊇ span B, A can be
re-arranged into B. In words, we want that every configuration A can be re-arranged into
any configuration B with the same or smaller span.

We call a configuration span-minimal if the removal of any of its tokens reduces the span.
Span-minimal configurations are essentially the “skeleta” that keep configurations with the
same span reachable. One general property of span-minimal configurations is the following:

Lemma 3 If a configuration is span-minimal, any move will reduce the span.

Proof: Suppose to the contrary that there is a move t 7→ p that does not reduce the span of
a span-minimal configuration C. In particular, p must be a valid destination position in the
subconfiguration C−t, because t does not count in the d-adjacency restriction. Hence, adding
a new token at position p to the configuration C − t has no effect on the span of C. But this
two-step process of removing token t and adding a token at position p is equivalent to moving
t to p, so span(C / t 7→ p) = span(C − t). But we assumed that span(C / t 7→ p) = span C,
and hence span C = span(C − t), contradicting that C is span-minimal. 2
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Under the 2-adjacency restriction, a chain is a sequence of tokens with the property that
the distance (in the board graph G) between two successive tokens is at most 2. We will use
chains as basic “units” for creating a desired span.

Notice that the notion of span is useless for the already analyzed triangular grid: provided
there is a valid move, the span of any configuration is the entire grid. Thus, for the triangular
grid, a configuration is span-minimal precisely if it has no valid moves. For the square grid,
however, the notion of span and span minimality is crucial.

4.3 Extra Tokens

As described in the previous section, we can only re-arrange configurations into configura-
tions with the same or smaller span. Unfortunately, the converse is not true. Indeed, the
key problem situations are span-minimal configurations; by Lemma 3, such configurations
immediately lose span when we try to move them. Hence, any two distinct span-minimal
configurations with the same span cannot reach each other. An example on the square grid
is that the two opposite diagonals of a square are unreachable from each other, as shown in
Figure 19.

Figure 19: Subgraph of configuration space reachable from full-span configurations (outlined in bold)
with no extra coins.

Thus we explore the notion of extra tokens, a set of tokens whose removal does not reduce
the span of the configuration. Lemma 2 and Figure 19 shows that we need at least one extra
token. In fact, the two opposite diagonals on the square grid shown in Figure 19 are difficult
to reach from each other; as shown in Figure 20, even one extra token is insufficient. What
is surprising is that a small number of extra tokens seem to be generally sufficient to make
the configuration space strongly connected. We prove this for the square grid in the next
section.

5 Square Grid

This section analyzes coin-moving puzzles on the square grid, using the tools from the pre-
vious section. In particular, we show that with just two extra coins, we can reach essentially
every configuration on the square grid with the same or smaller span. The only restriction
is that the extra coins can only be destined for positions that are adjacent to at least two
other coins.
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Figure 20: Subgraph of configuration space reachable from full-span configurations (outlined in bold)
with one extra token.

Theorem 2 On the square grid with the 2-adjacency restriction and unlabeled coins, con-
figuration A can be re-arranged into configuration B if there are coins e1 and e2 such that
span(A − {e1, e2}) ⊇ span(B − {e1, e2}) and each ei is adjacent to two other coins in B
(excluding e1 or e2). Furthermore, there is an algorithm to find such a re-arranging sequence
using O(n3) moves and O(n3) time, where n is the number of coins.

We prove this theorem by showing that every configuration (in particular, A and B)
can be brought to a canonical configuration with the same span via a sequence of (mostly)
reversible moves. As a consequence, we can move from any configuration A to any other B
by routing through this canonical configuration.

Our proof uses the model of picking up and dropping coins, which can be emulated as
described in Section 4.1. However, we must be careful how we pick up and drop coins,
so that the resulting moves are reversible. For example, initially we pick up the extra
coins e1 and e2, and then drop them temporarily wherever needed. For re-arranging the
source configuration A into the canonical configuration, this step may not result in reversible
moves, but fortunately this is not necessary in this case. For re-arranging the destination
configuration B into the canonical configuration, however, reversibility is crucial, and is
guaranteed by the condition in the theorem of each ei being adjacent to at least two other
coins.

5.1 Basics

We begin with some preliminary lemmas. A rectangle is the full collection of coins between
two x coordinates and two y coordinates. The half-perimeter of a rectangle is the number
of distinct x coordinates plus the number of distinct y coordinates over all coins in the
rectangle. The distance between two sets of coins is the minimum distance between two
coins from different sets.

Lemma 4 For the square grid, the span of any configuration is a disjoint union of (finite)
rectangles with pairwise distances at least 3.

Lemma 5 For each rectangle (connected component) of the span, say with half-perimeter h,
there must be at least ⌈h/2⌉ coins within that rectangle in the configuration.
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The following beautiful proof of this lemma has been distributed among several people,
but its precise origin is unknown. We first heard it from Martin Farach-Colton, who heard
it from Peter Winkler, who heard it from Pete Gabor Zoltan, who learned of it through the
Russian magazine Kvant (around 1985–1987).

Proof: Consider how the (full) perimeter changes as we compute the span of the coins within
the rectangle. Initially we have n coins, say, so the perimeter is at most 4n. Each coin that we
add while computing the span satisfies the 2-adjacency restriction, so the perimeter never
increases. In the end we must have a rectangle with perimeter 2h. Hence 4n ≥ 2h, i.e.,
n ≥ h/2, and because n is integral, n ≥ ⌈h/2⌉. 2

5.2 Canonical Configuration

Observe that a chain has span equal to its smallest enclosing rectangle. We define an L to be
a particular kind of chain, starting and ending at opposite corners of the rectangular span,
and arranged along two edges of this rectangle, with the property that it has the minimum
number of coins. See Figure 21 for examples. More precisely, if the half-perimeter of the
rectangle (along which the L is arranged) is 2k, then there must be precisely k coins, every
consecutive pair at distance exactly two from each other. And if the half-perimeter is 2k+1,
then there must be precisely k +1 coins, every consecutive pair at distance exactly two from
each other, except the last pair which are distance one from each other. In general, for
half-perimeter h, an L has ⌈h/2⌉ coins.

Figure 21: Examples of L’s.

While L’s can have any orientation, the canonical L is oriented like the letter L, starting
at the top-left corner, continuing past the lower-left corner, and ending at the bottom-right
corner.

Given a configuration, or more precisely, given its span and the number of coins in each
connected component of the span, we define the canonical configuration as follows. Refer to
Figure 22 for examples. Within each connected component (rectangle) of the span, say with
half-perimeter h, we arrange the first ⌈h/2⌉ coins into the canonical L. (Lemma 5 implies
that there are at least this many coins to place.) Any additional coins are placed one at a
time, in the leftmost bottommost unoccupied position.

This definition of the canonical configuration is fairly arbitrary, but it has the useful
property that each successive position for an additional coin is a valid destination, given the
previously placed additional coins. This allows us to focus on forming the canonical L, and
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Figure 22: Examples of the canonical configuration of k coins within a rectangular span. (Left) One
coin in addition to the canonical L. (Middle) Four coins in addition to the canonical L. (Right) All 24
additional coins.

then picking up all additional coins and dropping them in the order shown on the right of
Figure 22.

5.3 Canonicalizing Algorithm

The main part of proving Theorem 2 is to show an algorithm for converting any configura-
tion into the corresponding canonical configuration, using a sequence of (mostly) reversible
moves. We will apply induction (or, equivalently, recursion) on the number of coins. That
is, we assume that any configuration with fewer coins can be re-arranged into its canonical
configuration.

For now, we assume that there are no extra coins in addition to e1 and e2. For if there were
such a coin, we could immediately pick it up. Then we have a simpler configuration: it has
one fewer coin. Thus we can apply the induction hypothesis, and re-arrange the remaining
coins into their canonical configuration. Finally we must drop the previously picked-up coin
in the appropriate location. This aspect is somewhat trickier than it may seem: if we are
not careful, we may make an irreversible move. We delay this issue to Section 5.4.

The overall outline of the algorithm is as follows:

1. Initialize the set of L’s to be one for each coin.

2. Until the configuration is canonical:

(a) Pick two L’s whose bounding rectangles are distance at most two from each other.

(b) Re-orient the L’s so that the L’s themselves are distance at most three from each
other.

(c) Merge the two L’s.

Normally, each iteration of Step 2 decreases the number of L’s by one, so the algorithm
would terminate in at most n iterations. However, at any time we may find an extra coin in
addition to e1 and e2, and pick it up. Fortunately, this operation can only split one L into
at most two L’s. Thus we can charge the cost of creating an extra L to the event of picking
up an extra coin, which can happen at most n times. Hence, the total number of iterations
of Step 2 is O(n).
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In the following two sections, we describe how Steps 2(b) and 2(c) can be done in O(n2)
moves each. These bounds result in a total of O(n3) moves. The running time of the
algorithms will be proportional to the number of moves.

5.3.1 Re-orienting L’s

There are eight possible orientations for an L, depending at which corner it starts, and
whether it hugs the top edge or bottom edge of the rectangular span. We will only be
concerned with four different types of orientations, depending on whether it looks like the
letter L rotated 0, 90◦, 180◦, or 270◦. In other words, we are not concerned with the parity
issue of which corner might have two adjacent coins.

It is relatively easy to flip an L about a diagonal, using two extra coins. Figure 23 shows
how to do this in a constant number of moves for an L consisting of three coins. Figure 24
shows how to use these subroutines to flip an L of arbitrary size. Basically, we use the flips
of three-coin L’s to “bubble” the kink in the L up to the top, repeatedly until it is all the
way right. The total number of moves is O(n2), and they can easily be computed in O(n2)
time.

Figure 23: Flipping an L consisting of 3 coins. Extra coins are shaded.

Figure 24: Flipping a general L, using the subroutines in Figure 23.

The more difficult re-orientation to perform is a rotation of an L by ±90◦. Perhaps one
of the most surprising results of this paper is that this operation is possible with two extra
coins. One way to do it for a square span, shown in Figure 25, is to convert the L into a
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diagonal, and then convert more and more of the diagonal into a rotated L. This is the basis
for our “diagonal-flipping” puzzle in Figure 5.

Figure 25: One method for rotating an L with a square span. Although this example places the extra
coins in the final configuration, this is not necessary.

A simpler way to argue that L’s can be rotated is shown in Figure 26. Assume without
loss of generality that the initial orientation is the canonical L. First we apply induction to
the subconfiguration of all coins except the top-left coin. Thus all rows except the third row
contain at most one coin each, assuming the L consists of at least three rows. Now we apply
local operations in 3 × 3 or 3 × 2 rectangles (similar to Figure 23) to move the top-left coin
to the far right. (We cannot perform this left-to-right motion in one step using induction,
because there may be only three rows, and hence all coins may be involved in this motion.)
Finally we flip the L in the top three rows, as described above, thereby obtaining the desired
result. Again the number of moves and computation time are both O(n2). Note that the
same approach of repeated local operations applies when the L consists of only two rows.

5.3.2 Merging L’s

Consider two L’s L1 and L2 whose bounding rectangles R1 and R2 are distance at most
two from each other. Equivalently, consider two L’s such that span(L1 ∪ L2) has a single
connected component. This section describes how to merge L1 and L2 into a single L. This
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Figure 26: A general method for rotating an L. The first step is to apply induction, and the remaining
steps apply subroutines similar to Figure 23.

step is the most complicated part of the algorithm, not because it is difficult in any one case,
but because there are many cases involved.

First suppose that the rectangles R1 and R2 overlap. We claim that one of the L’s, say L1,
can be re-oriented so that one of its coins is contained in the other L’s bounding rectangle,
R2. This coin is therefore in the span of the L2, and hence redundant, so as described above
we can apply induction and finish the entire canonicalization process.

To prove the claim, there are three cases; see Figure 27. If a corner of one of the bounding
rectangles, say R1, is in the other bounding rectangle, R2, then we can re-orient L1 so that
one of its end coins is at that corner of R1 and hence in R2; see Figure 27(a)). Otherwise,
we have rectangles that form a kind of “thick plus sign” (Figure 27(b–c)); we distinguish
the two rectangles as according to whether they form the horizontal stroke or vertical stroke
of the plus sign. If the vertical stroke has width at least two (Figure 27(b)), then that
rectangle already contains a coin of the other L, because that L cannot have two empty
columns. Similarly, if the horizontal stroke has height at least two, then that rectangle
already contains a coin of the other L, because that L cannot have two empty rows. Finally,
if both strokes are of unit thickness, and there is not already a coin in their single-position
intersection (Figure 27(c)), then we can splice and redefine the L’s, so that one L is formed
by the top half of the vertical stroke and the left half of the horizontal stroke, and the other
L is formed by the bottom half of the vertical stroke and the right half of the horizontal
stroke, and then we have the first case in which the bounding rectangles share a corner.

Redundant coin
Redundant coins

Re−interpret Like part (a)

(c)(b)(a)

Re−orient

Figure 27: Merging two L’s with overlapping bounding rectangles (shaded). (a) The corner of one
L is contained in the other L’s bounding rectangle. (b) A “thick plus sign” in which at least one stroke
has thickness more than 1. (c) A plus sign in which both strokes have thickness 1.

Now suppose that the rectangles R1 and R2 do not overlap. Hence, either they share no
x coordinates or they share no y coordinates. Assume by symmetry that R1 and R2 share no
x coordinates. Assume again by symmetry that R1 is to the left of R2. A leg is a horizontal
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or vertical segment/edge of an L. Re-orient L1 so that its vertical leg is on the right side,
and re-orient L2 so that its vertical leg is on the left side. Now L1 and L2 have distance at
most three from each other; the distance may be as much as three because of parity.

We consider merging L1 with each leg of L2 one at a time. In other words, we merge L1

with the nearest leg of L2 within distance three of L1, then we merge the result with the
other leg of L2. The second leg can be treated in the same way as the first leg, by induction.
Thus there are two cases: either the first leg is the horizontal leg of L2, or it is the vertical
leg of L2. We first show how the latter case reduces to the former case.

If the vertical leg of L2 is the first leg, it can have only one coin within the y range of R1

(by the assumption that extra coins are picked up). We can add this coin separately, as if it
were a short horizontal leg of its own L. This leaves a portion of the vertical leg of L2 outside
of the y range of R2. Thus what remain of R1 and R2 do not share any y coordinates, so we
can rotate the picture 90 degrees and return to a horizontal problem.

This argument reduces merging two L’s to at most three merges between an L and a
horizontal leg. Still several cases remain, as illustrated in Figure 28. Case 1 is when the
horizontal leg is aligned with a coin in the L. Case 2 is when they are out of alignment. Case
3 is a special case occurring at the corner of the L, where the horizontal legs are aligned but
distances are higher than in Case 1. The above three cases are subdivided into subcases (a)
and (b), depending on how close the horizontal leg is to the L. Finally, Case 4 is when the
L and horizontal leg do not share x or y coordinates.

By the procedures in Figure 28, in all cases, the merging can be done in O(1) flips and
rotations of L’s, O(1) leapfrogs, and O(n) shuffles. In total, O(n2) moves are required to
merge an L and a horizontal leg, or equivalently to merge two L’s.

5.4 Final Sweep

Thus far we have shown how to reversibly re-arrange a configuration (A or B) into the
canonical configuration, using two extra coins. However, during this process, we may have
picked up extra coins, and now need to drop them appropriately. In reality, these coins sit
in arbitrary locations on the board. For re-arranging the source configuration A into the
canonical configuration, the moves need not be reversible, so we can simply drop the extra
coins in the canonical order, as in Figure 22. For re-arranging the destination configuration
B into the canonical configuration, we need to effectively drop these coins by a sequence of
reverse moves.

More directly, starting from the canonical configuration, we need to show how to dis-
tribute the extra coins to arbitrary locations on the board. We can achieve this effect by
making a complete sweep over the board. More precisely, we flip the L as in Section 5.3.1,
which has the effect of passing over every position on the board with the operations shown
in Figure 23. During this process, we will pass over the extra coins; at this point we treat
them as if they were picked up, applying the emulation in Section 4.1. Then we flip the L
back to its original orientation. On the way back, whenever we apply an operation in Figure
23 and pass over the desired destination d for one of the extra coins, we move the extra coin
to d while there are at least two adjacent coins from the L. By monotonicity of the flipping
process, this extra coin will not be passed over later by the flip, so once an extra coin is
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Case 4.

Case 3a.

Leapfrog subroutine.

Case 1a

Case 3b.

Re-interpret

Rotate

LeapfrogRotate

Case 1a.

Shuffle Shuffle Shuffle Flip

Shuffle subroutine.

Case 2a.

Case 1a

Rotate Leapfrog

Rotate

Case 1a

Case 2b.

Flip Case 1aLeapfrog

Case 1b.

Figure 28: Merging an L and the horizontal leg of a nearby L.

placed in its desired location, it remains there.
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5.5 Reducing Span

Now that we know any configuration can be brought to the corresponding canonical con-
figuration with a sequence of (mostly) reversible moves, it follows immediately that any
configuration can be re-arranged into any configuration with the same span. More generally,
if we are given configurations A and B satisfying span A ⊇ span B, we can first pick up all
coins in A − span B, then reversibly re-arrange both configurations into the same canonical
configuration. Putting these two sequence of moves together, we obtain a re-arrangement
from A− span B to B with some coins missing. Then we simply drop the previously picked
up coins in the appropriate positions to create B.

Note that these moves need not be reversible, because we are only concerned with the
direction from A to B. Indeed, the moves cannot be made reversible, because the span
cannot increase (Lemma 2).

This concludes the proof of Theorem 2.

5.6 Lower Bound

The bound on the number of moves in Theorem 2 is in fact tight:

Theorem 3 The “V to diagonal” puzzle in Figure 29 requires Θ(n3) moves to solve.

Figure 29: Re-arranging the V-shape in the upper left into the diagonal in the lower right requires
repeated rotations of diagonals as in Figure 5 (or repeated rotations of L’s).

Proof: We claim that re-arranging the V shape into a diagonal effectively requires repeated
“diagonal flipping.” At any time, only one component of coins can be actively manipulated
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(drawn with dotted lines in the figure); all other coins are isolated from movement. Thus we
must repeatedly re-arrange the active component so that it can reach the nearest isolated
coin. More specifically, we must re-arrange the active component into a chain starting at the
corner of the bounding rectangle that is near the isolated coin, and ending at the opposite
corner of the bounding rectangle of the active component. These two corners alternate for
each isolated coin we pick up, and that is the sense in which we must “flip a diagonal.” It
is fairly easy to see that each diagonal flipping of a chain with k coins takes Ω(k2) time. In
total, the puzzle requires Θ(

∑
n

k=1
k2) = Θ(n3) moves. 2

This theorem is the motivation for the puzzle in Figure 7.

5.7 Labeled Coins

We conjecture that Theorem 2 holds even when coins are labeled, subject to a few constraints.
The idea is that permutation of the coins is relatively easy once we reach the canonical
configuration. Examples of methods for swapping coins within one L are shown in Figure
30. The top figure shows how to swap a pair of coins when the canonical configuration is
nothing more than a canonical L. The middle figure shows how to perform the same swap
when there are four additional coins. Note that swapping the corner coin 3 works in exactly
the same way; indeed, this method works whenever the coins to be swapped have two other
coins adjacent to them, and there is another valid destination. The bottom figure shows how
to swap one of the end coins, which is more difficult. This last method begins with moving
the bend of the L toward the end coin, and then works locally on the coins 1, 2, 3.

One obvious constraint for these methods is that if there are no valid moves, permutation
is impossible. Also, if the bounding rectangle of an L has width or height 1, then the two
end coins of the L cannot be moved. Subject to these constraints, Figure 30 proves that the
coins in a single connected component of the span, other than the extra coins e1 and e2, can
be permuted arbitrarily.

It only remains to show that a coin can be swapped with e1 or e2, which implies that coins
between different connected components of the span can be swapped. We have not proved
this in general yet, but one illustrating example is the puzzle in Figure 8, whose solution
is shown in Figure 31. The idea is that coins 2 and 4 are e1 and e2, and so we succeed in
swapping e2 with coin 3. A slight generalization of this approach may complete a solution
to the labeled coins.

5.8 Fewer Extra Coins

We have shown that the configuration space is essentially strongly connected provided there
is a pair of extra coins, i.e., the removal of these two coins does not reduce the span. This
section summarizes what we know about configurations without this property.

If we have a span-minimal configuration with no extra coins, Lemma 3 tells us that
every move decreases the span. With an overhead of a factor of n2, we can simply try all
possible moves, in each case obtaining a configuration with smaller span, which furthermore
must have an extra coin (the moved coin). Now we only need to recursively check these
configurations.

22



4

1

5 46

2

5 64

3

5

1

6

33

65 6

2

5

3

2

4

3

3

2

2

2

3 4 5 6

4

2

1

3

2

1

45 5

2

1

9 10

8

11

7 63

2

1

1

5

4

9 10

87 6

4

9 10

87 6543

2

1

6

9 10

87

654

1

3

2

333

6543

2

1

6543

2

1

4563

2

1

5

4

63

2

1

5

4

1

2

3 6

1

2

4 5 6

1

2

4 5 6

1

4 5 6

Figure 30: Three cases of swapping coins in the canonical configuration. The coins to be swapped
have a thick outline.
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Figure 31: Solution to the puzzle in Figure 8.

Unfortunately, the situation is trickier with one extra coin. The key difficulty is that
multiple coins could individually be considered extra, but no pair of coins is extra. In other
words, there may be two coins such that removing either one does not reduce the span, but
removing both of them reduces the span. Two simple examples are shown in Figure 32.

This difficulty makes “one” extra coin surprisingly powerful. For example, using one
extra coin, an L with odd parity can be flipped, although it cannot be rotated, and an L
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Figure 32: The shaded coins are individually extra, but do not form a pair of extra coins suitable for
Theorem 2.

with even parity cannot be flipped or rotated. In Figure 33 we exploit this property to make
an interesting solvable puzzle initially with no pair of extra coins; it takes significant work
before a pair of extra coins appears.

Figure 33: A puzzle on the square grid with no initial pair of extra coins.

6 Conclusion

We have begun the study of deciding solvability of coin-moving puzzles and more generally
token-moving puzzles. We gave an exact characterization of solvable puzzles with labeled
coins on the equilateral-triangle grid. By introducing the notion of a constant number of
extra coins, we have given a tight theorem characterizing solvable puzzles on the square grid.
Specifically, we have shown that any configuration can be re-arranged into any configuration
with the same or smaller span using two extra coins, and that this is best possible in general.
The number of moves is also best possible in the worst case.

Several open questions remain:

1. What is the complexity of solving a puzzle using the fewest moves?

2. How do our results change if moves are forced to be slides that avoid other coins? We
conjecture that Theorem 1 still holds for unlabeled coins.

3. Can we extend our results on the square grid to the hypercube lattice in any dimension?

4. Can we combine Theorems 1 and 2 to deal with a mix of the square and equilateral-
triangle lattice, like the second puzzle in Figure 4?

5. Can we prove similar results for general graphs?
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