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TEAM C 
 

Intro: This weeks focus was on time complexity and turing machines as well as the games played 
in the lab. A few links are including for more in depth information on certain topics. Some 
information was taken from Michael Sipser's Introduction to the Theory of Computation 3rd 
Edition .  

 
Turing Machine (T.M.): A computer with infinite memory. Can be deterministic and 
nondeterministic. Turing machines are important and useful because it’s the theory behind what 
a computer is and what it can and can’t do. Some models of a turing machine are  

- Deterministic: A single path. 
- Nondeterministic: All paths at the same time. 

 
Ex. A Simple Deterministic Turing Machine. In a deterministic T.M. only one path can be taken 
at a time. In this example there are only two paths. If a 0 is fed to the T.M. change state from q0, 
the start state, to state q2 and reject. If a 1 is fed to the T.M. change state from q0 to q2 and 
accept, hence the ring around q2.  
  
  
  
 

M1. 
 
A turing machine can be defined formally as a 5-tuple by writing M1 = (Q,Σ,δ,q1, F), where 



 

1. Q is the finite set called states. 
2. Σ is a finite set called the alphabet. 
3. δ: Q x Σ Q is the transition function. 
4. q0 ϵ Q is the start state, and 
5. F ⊆ Q is the set of accept states. 
 
In this case, M1 is described formally as: 
1. Q = {q0, q1, q2} 
2. Σ = {0,1} 
3. δ is describes as 

 
4. q0 is the start state 
5. F = {q2} 
  
Ex. A Nondeterministic Turing Machine. The difference between a deterministic T.M. and a 
nondeterministic T.M. is the transition function. In a deterministic T.M., the transition function 
takes a state and an input symbol and produces the next state. In a nondeterministic T.M., the 
transition function takes a state  and an input symbol or the empty string,𝛆  ,  and produces the set 
of possible next states . 
  

             
 M2.  𝛆 is the empty string. 
 
A nondeterministic turing machine can be defined formally as M2 = M1 = (Q,Σ,δ,q1, F), where: 
1. Q is the finite set of states. 
2. Σ is a finite alphabet. 
3. δ: Q x Σ𝜀 P(Q) is the transition function. 
4. q0 ϵ Q is the start state, and 
5. F ⊆ Q is the set of accept states. 
 



 

M2 can be described formally as: 
1. Q = {q0, q1, q2, q3} 
2. Σ = {0,1} 
3. δ is given as 

 
 
 
 
 
 
 
 

4. Q1 is the start state 
5. F = {q4} 
 
Complexity: Time complexity of an algorithm is the number of steps taken to decide based on 
the input. Complexity can be based on space as well as time. 
 
Asymptotic Analysis: Highest term of a polynomial term that describes the running time based 
on the size of the input.  
 
Asymptotic analysis is important because knowing the complexity of algorithms allows you to 
answer questions such as: 

● How long will a program run on an input? 
● How much space will it take? 
● Is the problem solvable?  

 
Orders of Growth:  

О(1 ) Constant  
О(log n ) Logarithmic 
О(n ) Linear 
О(n Log n ) “n log n” 
О(n 2 ) Quadratic 
О(n 3 ) Cubic 
nO(1) Polynomial 
2O(n) Exponential 

 
More information on asymptotic analysis: 
http://www.cs.cornell.edu/courses/cs312/2004fa/lectures/lecture16.htm 



 

 

Notation: 
- ℕ is the set of natural numbers. ex) 0,1,2,3,4... or 1,2,3,4,... 
- ℝ+ is the set of real positive numbers. ex) 0.5, 2, e, 3, π, 4, 5,... 
- ∃ means “there exists”. 
- ∀ means “for all”. 
- ϵ means “an element of”. 
- s.t. is the abbreviation for “such that”. 

 
 
Def’n : Let f and g be functions f,g: ℕ →ℝ+. We say that ƒ(n) ϵ O(g(n)) if ∃ c, no >  s.t. 0 ≤ ƒ(n) ≤ 
c * g(n) ∀ n ≥ no. 
 

Ex.1) ƒ(n) = 5n3 + 2n2 +22n + 6 ƒ(n) = O(n3), g(n) = n3  
Let c = 6 and no = 10 
ƒ(n) ≤ 6n3 ∀ n ≥ 10 
5,428 ≤ 6,000 

 
Ex.2) ƒ(n) = 5n3 + 2n2 +22n + 6 ≤ 5n3 + 2n3 + 22n3 + 6n3 

ƒ(n) = 35n3 
ƒ(n) = O(n3) where c = 35 and no = 1 

 
Little-o Notation: 
 

Def’n : Let f and g be functions f , g  ϵ ℕ →ℝ+. We say that f (n) ϵ o(g (n)) < limn->∞ f (n) / g (n) = 0. 
 

Ex.) f (n) = 3n3 
g (n) = n4 

 
f (n) / g (n) = 3n3 / n4 = 1 / n => 0 

 
Def’n : Let t :ℕ →ℝ+ be a function.  
 

Ex.1) for(int i = 0; i < n; i++) 
{ 

add += arr[i]; 
} 

 
time complexity = O(n) 



 

 
Ex.2) for(int i = 0; i < n; i++) 

{ 
for(int j = 0; j < n; j++) 
{ 

add += arr[i]; 
} 

} 
 

time complexity = O(n2) 
 
Polynomial Time: All reasonable deterministic models of computation can be found in a 
polynomial factor and are polynomially equivalent. This allows us to develop a theory and look 
at the complexity of problems not specific to a single model of computation. 
 
Complexity Classes: 

- P: Decision problems that can be solved on a DTM in polynomial time. 
- NP: Decision problems that can be solved on a NTM in polynomial time. 

 
Time: Define the time complexity class TIME(t (n)), to be the set of all languages decidable by a 
o(t (n)) time TM. 

*Decidable: a solution (yes/no) can always be found in a finite amount of time* 
 
The class P: 
 
Def’n : P is the class of languages decidable in polynomial time on a deterministic single-tape 
TM. 

P = Uk TIME(nk) 
 

Ex.) PATH = {<G , s , t > : G  is a directed graph with a path from s  to t } 
 



 

 
 
PATH ɛ TIME(n2) 
PATH ɛ TIME(nlogn) ɛ TIME(n2) ɛ … 

 
P ɛ O(n) <= O(n2) <= … 
P ɛ O ɛ (n2) 

 
 
The class NP: 
 
NTIME: NTIME(t (n)) = {L: L is a language decided by a O(t (n)) time nondeterministic TM.} 
 
NP = Uk NTIME(nk) 
 
*NP is the class of languages that have polynomial time verifiers. 

 
 
Polynomial Time Verifier: 
 
Def’n : A verifier for a language A  is an algorithm V  where A  = {w : V  accepts <w , c > for some 
string c }. c  is the certificate. 
 



 

Hamiltonian Path: 
 

HP = {<G , s , t > | G  is a directed graph with a Hamiltonian path from s  to t } 
 

 
 

Path = <s , b , f , e , c , d , g , t > 
 

1. Does this visit all the nodes? Yes // O(n) 
2. Does this form a valid path? Yes // O(n2) 
3. Does the path start at s  and end at t ? Yes // O(1) 

 
P ⊆ NP 

 
Verifying answer is equivalent to Uk NTIME(nk). 

 
 
Clique ={ < <G,K> , C> > : G is an undirected graph with a K-clique } 
 

Thm. - Clique ɛ NP 
Verifier ⇒ < <G,K> ,C > - C is a list of vertices 
 

1) Is C ɛ V(G) ?, all vertices in C are in G 
2) All connected to each other? O(|C|2) 
3)  If both 1 ,2 true 

 
 
-Solve Problem NonDeterministically  



 

1) Select K vertices from G 
2) Do they form a Clique? 

 
Subset-sum ={ <S,T> : S = {x1 ….. Xk} and for some {y1 ….. yL} <= S such that Σyi=  T  
 

S = {1, -3, 4, 8, -5, 7} 
T=10 
⇒  yes {8,7,-5} 

Thm. - Subset-sum ɛ NP 
Verifier → < <S, T>, C > - lists of number is subset 

1) Check that C <= S 
2) Check that Σ Ci=  T 
3) If 1 and 2 , yes ; no 

 
 
 
CoNP 
 

● Satisfiability 
○ Boolean Variables X=0/1 
○ Boolean Operators ⇒ AND (^), OR(∨), NOT(¬) 
○ Boolean Formula 𝜃 = ( x ∨ z ) ^ (y ∨ ¬z) ^ (¬z ∨ ¬y) 

Satisfiable assignments such that 𝜃 ⇒ 1 
Thm. - SAT = { < 𝜃 > | 𝜃 is a satisfiable boolean formula} is NP complete. 

  
P and NP relation: 
 

P versus NP question: asks whether every problem whose solution can be quickly 
verified by a computer can also be quickly solved by a computer. An answer to the P = NP 
question would determine whether problems that can be verified in polynomial time, like the 
subset-sum problem, can also be solved in polynomial time. Aside from being an important 
problem in computational theory, a proof either way would have profound implications for 
mathematics, cryptography, algorithm research, artificial intelligence, game theory, multimedia 
processing, philosophy, economics and many other fields. 
 
Papers claiming to settle P versus NP: 
https://www.win.tue.nl/~gwoegi/P-versus-NP.htm 
 

https://www.win.tue.nl/~gwoegi/P-versus-NP.htm


 

Lab 1 
In this week’s lab, we played Hex, Dots and Boxes, and 3D tic-tac-toe. The goal was to figure 
out whether first or second player had a winning advantage. IN Hex, first player has an initial 
winning advantage, but it can be easily trumped if second player can make a good block, 
hypothetically creating a fair game. In Dots and Boxes, the first player also has an initial 
advantage, however, given the right moves and player experience, the second player can 
definitely turn it around. In all variations of 3D tic-tac-toe with equal numbers of levels and 
columns, the first player has an advantage throughout the entire game. He/She can always either 
win or tie, never lose, that is, if they know the strategy to do so. 
 
 
 
 
 


