
Games, Puzzles, & Computation Class Notes
Written by: Angel, Austin, Kevin, and Lillian

Week 3: Jan 30th, 2017 - Feb 3rd, 2017

Review of the previous week’s lab
“dots and boxes”

Figure 1: A simple example of B making
a move to set themselves up for a win.

In the last lab session, one of
the games that was demonstrated was
“dots” (a game where players try to
make boxes by connecting dots). One
of the strategies of the game is called
double-dealing, which is when a player
gives up some of their boxes so that one
player can force the other one to make
certain moves, leaving them with more
boxes in the next turn.

“hex”

Figure 2: Red won because blue failed
to block them.

This game has a distinct 1st player
advantage. A good tip, when play-
ing this game, is to pick blocks that
will leave 2 other choices in the next
round.
There can never be a tie in hex.

There were 3 other games to play at the
lab last week:
Niya, Gobblet, and Quantum tic-tac-toe.

1

Definitions

Computation - Can be thought of as the process of producing an output from a set of inputs
and a finite number of steps.

Turing Machine - In its simplest form, a Turing machine can be thought of as a computer
with infinite memory.

Decision Problems - Problems whose computed output is either yes or no. All of the
problems referred to in complexity classes are decision problems.

Time Complexity of an Algorithm - The number of steps taken (to decide) based on the
input.

Deterministic - A single path, sequential.

Nondeterministic - All paths at the same time.

Time - Let t : N → R be a function. Define the time complexity class TIME(t(n))
to be the set of all languages decidable by a O(t(n)) time Turing Machine. Similarly,
NTIME(t(n)) = {L : L is a language decided by a O(t(n)) time nondeterministic Turing
machine.}

Decidable - A solution (yes/no) can always be found in a finite amount of time.

Verifier - A verifier for a language A is an algorithm V where A = {w : V accepts < w, c >
for some string c}, where c is the certificate.

Polynomial Time - All reasonable deterministic models of computation are polynomially
equivalent. This allows us to develop a theory and look at the complexity of problems that
aren’t specific to one model of computation.

2

Figure 3: Complexity classes and Examples of some games in those categories

Classes of Complexity

P - Polynomial-Time

• P is the class of languages decidable in Polynomial time on a deterministic Turing
machine.

P = UkTIME(nk)

Ex: O(n2), O(nlogn), O(n9), O(n100)

NP - Nondeterministic Polynomial-Time

• NP is the class of languages decidable in Polynomial time on a nondeterministic Turing
machine.

NP = UkNTIME(nk)

• Equivalently, if the answer to a problem is yes, then there is a proof of this that can
be verified by a deterministic polynomial-time algorithm.

Ex: Legend of Zelda, Super Mario Bros, Candy Crush Saga, and Battleship are NP-
Complete, which means they are in both NP and NP-Hard.

3

PSPACE Polynomial-Space

• This class of decision problems contains all problems are solvable by a Turing machine
in polynomial space.

Ex: Games that are PSPACE-complete are Hex, Reversi, Mahjong, Atomix, and
Sokoban, when generalized to be played on a n x n board.

EXP - Exponential-Time

• This class of decision problems contains all problems in exponential time by a Turing
machine.

Ex: O(2n)

R - Recursive Languages

• This class of decision problems includes all problems that are solvable by a Turing
machine.

• This class is often identified with the class of ”effectively computable” functions.

Other things to know. . .

co-NP - compliment of NP

• This class can be thought of as the “opposite” of NP. If the answer to a problem is no,
then there is a proof of this that can be verified by a deterministic polynomial-time
algorithm.

X-hard - (NP -hard, EXP -hard, etc. . .)

• A problem is X -hard for some complexity class X if it is at least as hard as the hardest
problems in X. Proving a problem is X -hard is often done through reductions.

X-complete - (NP -complete, EXP -complete, etc. . .)

• A problem is X -complete for some complexity class X if it:

1. Is in class X.

2. Is X -hard.

Showing Membership in NP
There are two different equivalent ways to show that a problem is in the class NP; either
through a polynomial time verification algorithm, or a polynomial time nondeterministic
solution algorithm. Here are some examples:

Problem: - Subset-Sum
Input: A set of integers S and an integer k.
Output: Does there exist a set T ⊆ S s.t. the sum of the elements of T is k?

Thm. The Subset-Sum problem is in the class NP.

4

• Verifier ⇒<< S, k >, c > - c is a list of numbers.

1. Check that c ⊆ S.

2. Check that
∑|c|

i=1 ci = k.

3. If 1 and 2 are true, output yes, otherwise, no.

• Solve the problem nondeterministically:

1. Nondeterministically select a set T ⊆ S.

2. Check that
∑|T |

i=1 Ti = k.

3. If 2 is true, output yes, otherwise, no.

A clique is a subset of vertices of an undirected graph s.t. its induced subgraph is
complete.

Problem: - Clique
Input: An undirected graph G =< V,E > and an integer k.
Output: Does G contain a k-clique?

Thm. The Clique problem is in the class NP.

• Verifier ⇒<< G, k >, c > - c is a list of vertices.

1. Is c ⊆ V (G)?

2. Are all vertices in c are connected to each other?

3. If 1 and 2 are true, output yes, otherwise, no.

• Solve the problem nondeterministically:

1. Nondeterministically select k vertices in G.

2. Do they form a clique?

3. If 2 is true, output yes, otherwise, no.

Reductions
Reductions are algorithms that are used to transform one problem into another. Reduc-

tion from one problem to another problem is a way to show that the second problem is at
least as difficult as the first. We say problem A is reducible to problem B if there exist an
algorithm that solves problem B efficiently and can be used to solve problem A. Although
there are many methods of algorithm reductions, we focus on a specific and very popular
kind of reduction often used to prove NP-Completeness.

0.1 Satisfiability

Satisfiability (also known as Boolean Satisfiability Problem) is a decision problem of deter-
mining whether there exist a combination of literals (TRUE/FALSE) such that the expres-
sion is satisfied (OUTPUT = TRUE). If true, we call such an expression satisfiable (and
similarly, unsatisfiable if the output is FALSE).

5

• Problem: Satisfiability

• Input: A set of Boolean Variables V and a set of clauses C over V

• Output: Does there exist a satisfying truth assignment for C, i.e, a way to set the
literals true or false so that each clause contains at least one true literal?

Figure 4: Adapted From ’The Quest for Efficient Boolean Satisfiability Solvers’ - Sharad
Malik

0.2 3-Satisfiability (3SAT)

It is easy to test Satisfiability on problems containing only two pairs of clauses, however, we
are interested in problems containing of a larger class. How many literals per clause do you
need to turn a problem from polynomial to hard?

• Problem: 3-Satisfiability

• Input: A collection of clauses C where each clause contains exactly 3 literals, over a
set of Boolean Variables V.

• Output: Is there a truth assignment to V such that each clause is satisfied?

Clique Problem
A clique is an undirected graph G = (V, E) is a subset V’ ⊆ V of vertices, each pair

of which is connected by an edge in E. In other words, a clique is a complete subgraph of
G. The size of a clique is the number of vertices it contains. The clique problem is the
optimation problem of finding a clique of maximum size in a graph. As a decision problem,
we ask simply whether a clique of a given size K exists in the graph. the formal definition
is

CLIQUE = { 〈 G, E 〉 : G is a graph containing a clique of size k }

A naive algorithm for determining whether a graph G = (V, E) with —V— vertices has
a clique size of k is to list all k-subsets of V, and check each one to se whether it forms a

6

clique. An efficient algorithm for the clique problem is unlikely to exist.

Theorem The clique problem is NP-complete.

Proof To show that CLIQUE ∈ NP, for a given graph G = (V, E), we use the set V’
⊆ V of vertices in the clique as a certificate for G. We can check whether V’ is a clique
in polynomial time by checking whether, for each pair u, v ∈ v’, the edge (u,v) belongs to
E. We next prove that CLIQUE is reducable to 3-CNF SAT, which shows that the clique
problem is NP-hard. You might be surprised that we should be able to prove such a result,
since on the surface logical formulas seem to have little to do with graphs. The reduction
algorithm begins with an instance of 3-CNF-SAT.

Let Φ = C1 ∧ C2 ∧ C3 · · · Ck be a boolean formula in 3-CNF with k clauses. for r = 1,
2, · · · k, each clause Cr has exactly three distinct literals lr1, l

r
2, and lr3. We shall construct

a graph G such that Φ is satisfiable if and only if G has a clique of size k. We construct
the graph G = (V, E) as follows. For each clause Cr = (lr1 ∨ lr2 ∨ lr3) in Φ, we place a triple
of vertices vr1, v

r
2, v

r
3 into V. We put an edge between two vertices vri and vsj if bot hof the

following hold:

• vri and vsj are in different triples, that is, r 6= s, and

• their corresponding literals are consistent, that is, lri is not the negation of lsj

We can easilty build this graph from Φ in polynomial time. As an example of this
construction, if we have
Φ = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3),
then G is the graph shown in figure 6.

Figure 5: CNF to Clique

We must show that this transformation of Φ into G is a reduction. First, suppose that
Φ has a satisfying assignment. Then each clause Cr contains at least one literal lri that is
assigned 1, and each such literal corresponds to a vertex vri . Picking one such ”true” literal
fro meach clause yields a set V’ of k vertices. We claim that V’ is a clique. For any two
vertices vri , v

s
j ∈ V’, where r 6= s, both corresponsding literals lri and lsj map to 1 by the

given satisfying assignment, and thus the literals cannot be complements. Thus, by the
construction of G, the edge (vri , v

s
j) belongs to E.

7

Good Reference Material
• Computational Complexity: A Modern Approach

Princeton University
pdf

• MIT OpenCourseWare - Video and Class Notes
Lecture 23: Computational Complexity
link

• University of Illinois - Class Notes
Lecture 21: NP-Hard Problems
pdf

8

http://theory.cs.princeton.edu/complexity/book.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-fall-2011/lecture-videos/lecture-23-computational-complexity/
http://jeffe.cs.illinois.edu/teaching/algorithms/2009/notes/21-nphard.pdf

