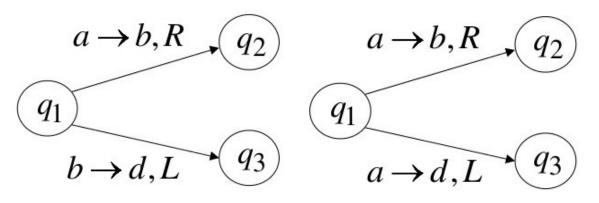
CSCI 4341: Games, Puzzles, & Computation Class notes for 1/23/17 & 1/25/17 TEAM C

Turing Machine: A computer with infinite memory. Can be deterministic and nondeterministic.

- Deterministic: A single path.
- Nondeterministic: All paths at the same time.

Ex.) Deterministic Turing Machine vs. Nondeterministic Turing Machine



Notice the T.M. on the left can only follow either path a or path b and the T.M. on the right takes all paths with one choice.

<u>Complexity</u>: Time complexity of an algorithm is the number of steps taken to decide based on the input.

<u>Asymptotic Analysis</u>: Highest term of a polynomial term that describes the running time based on the size of the input.

Notation:

- N is the set of natural numbers. ex) 0,1,2,3,4... or 1,2,3,4,...
- \mathbb{R}^+ is the set of real positive numbers. ex) 0.5, 2, e, 3, π , 4, 5,...
- ∃ means "there exists".
- ∀ means "for all".
- E means "an element of".
- s.t. is the abbreviation for "such that".

Def'*n*: Let f and g be functions f,g: $\mathbb{N} \to \mathbb{R}^+$. We say that f(n) ε O(g(n)) if ∃ c, n₀ > s.t. 0 ≤ f(n) ≤ c * g(n) \forall n ≥ n₀.

```
Matthew Martinez

Miguel Martinez

Joseph Reyes

Ernesto Valdez

Ex.1) f(n) = 5n^3 + 2n^2 + 22n + 6

Let c = 6 and n<sub>o</sub> = 10

f(n) \le 6n^3 \forall n \ge 10

5,428 \le 6,000

Ex.2) f(n) = 5n^3 + 2n^2 + 22n + 6 \le 5n^3 + 2n^3 + 22n^3 + 6n^3

f(n) = 35n^3

f(n) = O(n^3) where c = 35 and n<sub>o</sub> = 1
```

Little-o Notation:

Def '*n*: Let f and g be functions *f*, *g* ε \mathbb{N} → \mathbb{R}^+ . We say that *f*(n) ε o(*g*(n)) < lim_{n→∞} *f*(n) / *g*(n) = 0.

Ex.)
$$f(n) = 3n^3$$

 $g(n) = n^4$
 $f(n) / g(n) = 3n^3 / n^4 = 1 / n => 0$

Def '*n*: Let *t*: \mathbb{N} → \mathbb{R}^+ be a function. Define the time complexity class TIME(*t*(*n*)), to be the set of all languages decidable by a o(*t*(*n*)) time TM.

Decidable: a solution (yes/no) can always be found in a finite amount of time

time complexity = $O(n^2)$

Matthew Martinez Miguel Martinez Joseph Reyes Ernesto Valdez <u>Polynomial Time</u>: All reasonable deterministic models of computation can be found in a polynomial factor and are polynomially equivalent. This allows us to develop a theory and look at the complexity of problems not specific to a single model of computation.

Complexity Classes:

- P: Decision problems that can be solved on a DTM in polynomial time.
- NP: Decision problems that can be solved on a NTM in polynomial time.

The class P:

Def '*n*: P is the class of languages decidable in polynomial time on a deterministic single-tape TM.

$$P = U_k TIME(n^k)$$

Ex.) PATH = { $\langle G, s, t \rangle$: *G* is a directed graph with a path from *s* to *t*}

// insert graphic here PATH ε TIME(n²) PATH ε TIME(nlogn) ε TIME(n²) ε ...

P ε O(n) <= O(n²) <= ... P ε O ε (n²)

The class NP:

Def'*n*: NTIME(t(n)) = {L: L is a language decided by a O(t(n)) time nondeterministic TM.}

// insert graphic here, input dependent, worst case number of steps

 $NP = U_k NTIME(n^k)$

*NP is the class of languages that have polynomial time verifiers.

Polynomial Time Verifier:

Def '*n*: A verifier for a language *A* is an algorithm *V* where $A = \{w: V \text{ accepts } < w, c > \text{ for some string } c\}$. *c* is the certificate.

Hamiltonian Path:

HP = { $\leq G$, s, $t \geq | G$ is a directed graph with a Hamiltonian path from s to t}

Matthew Martinez Miguel Martinez Joseph Reyes Ernesto Valdez

// insert graphic here

Path = <*s*, *b*, *f*, *e*, *c*, *d*, *g*, *t*>

1. Does this visit all the nodes?	// O(n)
2. Does this form a valid path?	// O(n ²)
3. Does the path start at <i>s</i> and end at <i>t</i> ?	// O(1)

Polynomial and nondeterministic are equivalent.

 $P\subseteq \mathrm{NP}$

Verifying answer is equivalent to U_k NTIME(n^k).