
Matthew Martinez
Miguel Martinez
Joseph Reyes
Ernesto Valdez

CSCI 4341: Games, Puzzles, & Computation
Class notes for 1/23/17 & 1/25/17

TEAM C

Turing Machine: A computer with infinite memory. Can be deterministic and nondeterministic.
- Deterministic: A single path.
- Nondeterministic: All paths at the same time.

Ex.) Deterministic Turing Machine vs. Nondeterministic Turing Machine

Notice the T.M. on the left can only follow either path a or path b and the T.M. on the right takes 
all paths with one choice. 

Complexity: Time complexity of an algorithm is the number of steps taken to decide based on 
the input.

Asymptotic Analysis: Highest term of a polynomial term that describes the running time based 
on the size of the input.

Notation:
-  is the set of natural numbers. ex) 0,1,2,3,4... or 1,2,3,4,...ℕ
- ℝ+ is the set of real positive numbers. ex) 0.5, 2, e, 3, π, 4, 5,...
- ∃ means “there exists”.
- ∀ means “for all”.
-  means “an element of”.Ɛ
- s.t. is the abbreviation for “such that”.

Def’n: Let f and g be functions f,g: ℕ →ℝ+. We say that ƒ(n) ɛ O(g(n)) if ∃ c, no > 
s.t. 0 ≤ ƒ(n) ≤ c * g(n) ∀ n ≥ no.



Matthew Martinez
Miguel Martinez
Joseph Reyes
Ernesto Valdez

Ex.1) ƒ(n) = 5n3 + 2n2 +22n + 6 ƒ(n) = O(n3), g(n) = n3 
Let c = 6 and no

 = 10
ƒ(n) ≤ 6n3 ∀ n ≥ 10
5,428 ≤ 6,000

Ex.2) ƒ(n) = 5n3 + 2n2 +22n + 6 ≤ 5n3 + 2n3 + 22n3 + 6n3

ƒ(n) = 35n3

ƒ(n) = O(n3) where c = 35 and no = 1

Little-o Notation:

Def’n: Let f and g be functions f, g ɛ ℕ →ℝ+. We say that f(n)  o(ɛ g(n)) < limn->∞ f(n) / g(n) = 0.

Ex.) f(n) = 3n3

g(n) = n4

f(n) / g(n) = 3n3 / n4 = 1 / n => 0

Def’n: Let t:ℕ →ℝ+ be a function. Define the time complexity class TIME(t(n)), to be the set of 
all languages decidable by a o(t(n)) time TM.

*Decidable: a solution (yes/no) can always be found in a finite amount of time*

Ex.1) for(int i = 0; i < n; i++)
{

add += arr[i];
}

time complexity = O(n)

Ex.2) for(int i = 0; i < n; i++)
{

for(int j = 0; j < n; j++)
{

add += arr[i];
}

}

time complexity = O(n2)



Matthew Martinez
Miguel Martinez
Joseph Reyes
Ernesto Valdez
Polynomial Time: All reasonable deterministic models of computation can be found in a 
polynomial factor and are polynomially equivalent. This allows us to develop a theory and look 
at the complexity of problems not specific to a single model of computation.

Complexity Classes:
- P: Decision problems that can be solved on a DTM in polynomial time.
- NP: Decision problems that can be solved on a NTM in polynomial time.

The class P:

Def’n: P is the class of languages decidable in polynomial time on a deterministic single-tape 
TM.

P = Uk TIME(nk)

Ex.) PATH = {<G, s, t> : G is a directed graph with a path from s to t}

// insert graphic here
PATH  TIME(nɛ 2)
PATH  TIME(nlogn)  TIME(nɛ ɛ 2)  …ɛ

P  O(n) <= O(nɛ 2) <= …
P  O  (nɛ ɛ 2)

The class NP:

Def’n: NTIME(t(n)) = {L: L is a language decided by a O(t(n)) time nondeterministic TM.}

// insert graphic here, input dependent, worst case number of steps

NP = Uk NTIME(nk)

*NP is the class of languages that have polynomial time verifiers.

Polynomial Time Verifier:

Def’n: A verifier for a language A is an algorithm V where A = {w: V accepts <w, c> for some 
string c}. c is the certificate.

Hamiltonian Path:

HP = {<G, s, t> | G is a directed graph with a Hamiltonian path from s to t}



Matthew Martinez
Miguel Martinez
Joseph Reyes
Ernesto Valdez

// insert graphic here

Path = <s, b, f, e, c, d, g, t>

1. Does this visit all the nodes? // O(n)
2. Does this form a valid path? // O(n2)
3. Does the path start at s and end at t? // O(1)

Polynomial and nondeterministic are equivalent.

P ⊆ NP

Verifying answer is equivalent to Uk NTIME(nk).


