
Games, Puzzles, & Computation Class Notes
Written by: Angel, Austin, Kevin, and Lillian

Week 3: Jan 30th, 2017 - Feb 3rd, 2017

Review of the previous week’s lab
“dots and boxes”

Figure 1: A simple example of B making a
move to set themselves up for a win.

In the last lab session, one of the
games that was demonstrated was “dots”
(a game where players try to make boxes
by connecting dots). One of the strate-
gies of the game is called double-dealing,
which is when a player gives up some
of their boxes so that you can force the
other player to make certain moves, leav-
ing you with more boxes in the next
turn.

“hex”

Figure 2: Red won because blue failed to
block them.

This game has a large 1st player advantage.
A good tip, when playing this game, is to pick
blocks that will leave you with 2 other choices in
the next round.
There can never be a tie in hex.

There were 3 other games to play at the lab last
week: Niya, Gobblet, and Quantum tic-tac-toe.

1



Figure 3: Examples of games and their complexities.

Classes of Complexity

Computation - Can be thought of as the process of producing an output from a set of inputs and a
finite number of steps.

Turing Machine - In its simplest form, a Turing machine can be thought of as a computer with infinite
memory.

Decision Problems - Problems whose computed output is either yes or no. All of the problems referred
to in complexity classes are decision problems.

P - Polynomial-Time

• This class of decision problems contains all problems solvable in polynomial time by a Turing
machine. O(n2)

NP - Nondeterministic Polynomial-Time

• This class of decision problems contains all problems solvable by a ”nondeterministic Turing
machine” in polynomial time.

• Equivalently, if the answer to a problem is yes, then there is a proof of this that can be verified
by a deterministic polynomial-time algorithm.

2



Figure 4: Examples of games and their complexities.

PSPACE Polynomial-Space

• This class of decision problems contains all problems are solvable by a Turing machine in poly-
nomial space.

EXP - Exponential-Time

• This class of decision problems contains all problems in exponential time by a Turing machine.
O(2n)

R - Recursive Languages

• This class of decision problems all problems that are solvable by a Turing machine.

• This class is often identified with the class of ”effectively computable” functions.

Other things to know. . .

co-NP - compliment of NP

• This class can be thought of as the opposite of NP. If the answer to a problem is no, then there
is a proof of this that can be verified by a deterministic polynomial-time algorithm.

X-hard - (NP -hard, EXP -hard, etc. . . )

• A problem is X -hard for some complexity class X if it is at least as hard as the hardest problems
in X. Proving a problem is X -hard is often done through reductions.

X-complete - (NP -complete, EXP -complete, etc. . . )

• A problem is X -complete for some complexity class X if it:

1. Is in class X.

2. Is X -hard.

Example of how to show a problem is in the class NP

To show that a problem is in the class NP, all that is needed is a polynomial time verification for
an answer to that problem.
Problem: - Subset-Sum
Input: A set of integers S and an integer k
Output: Does there exist a set T ⊆ S s.t. the sum of the elements of T is k?

3



Given: A set of integers S, an integer k, and an alleged “solution set” T :

1. Check that T ⊆ S

2. Check that
∑

i ti = k

3. If 1 and 2 are true, output yes, otherwise, no.

Reductions
Reductions are algorithms that are used to transform one problem into another. Reduction from

one problem to another problem is a way to show that the second problem is “at least as” difficult as
the first. We say problem A is reducible to problem B if there exist an algorithm that solves problem B
efficiently and can be used to solve problem A. Although there are many methods of algorithm reduc-
tions, we focus on a specific and very popular kind of reduction often used to prove NP-Completeness.

We use reductions in 2 different situations:
1.) When we are solving a problem that is similar to one we have solved, so we can use the solution
from our original problem to solve the new one.
2.) When we are solving a problem that is similar to a difficult problem we have solved, so we obtain
a proof by contradiction by arguing that the new problem is easy to solve, when it in fact is not.

Satisfiability (also known as Boolean Satisfiability Problem) is a decision problem of determining
whether there exists a combination of literals (TRUE/FALSE) such that the expression is satisfied
(OUTPUT = TRUE). If true, we call such an expression satisfiable (and similarly, unsatisfiable if the
output is false).

Problem: - Satisfiability
Input: A set of Boolean Variables V and a set of clauses C over V
Output: Does there exist a satisfying truth assignment for C, i.e, a way to set the variables V1, . . . , Vn

true or false so that each clause contains at least one true literal?

Figure 5: Adapted From ’The Quest for Efficient Boolean Satisfiability Solvers’ - Sharad Malik

Literals are the Boolean Variables (either positive literal (x) or negative literal (¬x)). A Clause
can be described as the disjunction between two literals (X OR ¬X). When a formula is described as
conjunctive normal form (CNF), it means the conjunction of various clauses ((x and not x) or (y or
not y) or (z or not z)) .

3-Satisfiability It is easy to test Satisfiability on problems containing only two pairs of clauses, however,
we are interested in problems containing of a larger class. How many literals per clause do you need to
turn a problem from polynomial to hard?

4



Problem: - 3-Satisfiability (3-SAT)
Input: A collection of clauses C where each clause contains exactly 3 literals, over a set of Boolean
Variables V .
Output: Is there a truth assignment to V such that each clause is satisfied?

Clique Problem
The clique problem is the computational problem of finding cliques (subsets of the vertices, all adjacent
to each other, that form a complete subgraph). For a given graph G = (V,E), the clique problem is to
find whether G contains a clique of size ≥ k.

Reducing 3-SAT to k-clique
Construct a graph G of k clusters with a maximum of 3 nodes in each cluster, and each node in a
cluster is labeled with a literal from the clause. An edge is attached to all pairs of nodes in different
clusters expect for the pair (x,¬x). Also, no edge is added between nodes of the same cluster.

Figure 6: b = (x2 + x1 + ¬x3)(¬x1 + ¬x2 + x4)(x2 + ¬x4 + x3)

If two nodes in the graph are connected, the corresponding literals can be simultaneously be assigned
True. (This is okay because there is on edge between the literals (Xi) and (¬Xi). If two literals, not
from the same clause can be assigned True simultaneously, the nodes corresponding to these literals
in the graph are connected. (Note that the construction of the graph takes polynomial time). We say
G has a k-clique if and only if b is satisfiable. If b is satisfiable, let A be a satisfying assignment, and
select from each clause a literal that is True in A to construct a set S. |S| = k. Since no two literals
in A are from the same clause and they are simultaneously True, all the nodes are connected to each
other in the graph, forming a k-clique. Hence, we say the graph has a k-clique.

Figure 7: b = (x2 + x1 + ¬x3)(¬x1 + ¬x2 + x4)(x2 + ¬x4 + x3)

5



Good Reference Material
• Computational Complexity: A Modern Approach

Princeton University
pdf

• MIT OpenCourseWare - Video and Class Notes
Lecture 23: Computational Complexity
link

• University of Illinois - Class Notes
Lecture 21: NP-Hard Problems
pdf

6

http://theory.cs.princeton.edu/complexity/book.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-fall-2011/lecture-videos/lecture-23-computational-complexity/
http://jeffe.cs.illinois.edu/teaching/algorithms/2009/notes/21-nphard.pdf

