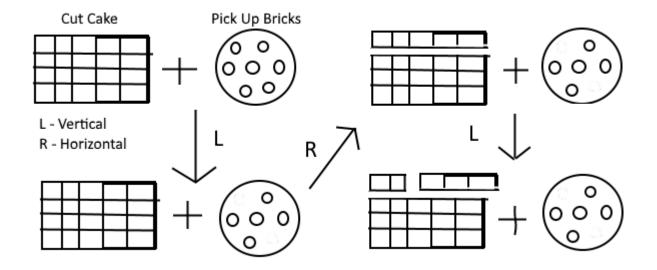
$1 \ 2/15/17$

1.1 Sums of Position

• already used sums of component

Def'n: δ, α, β are positions in normal play games. Define $\alpha + \beta$ to be a new position consisting of components α and β . To move in $\alpha + \beta$, a player chooses a component to move in.

• A player moves from $\alpha + \beta$ to either $\alpha' + \beta$ or $\alpha + \beta'$.



1.2 Determinate Sums

What is our strategy/ how do types behave under sums? Determine the type of the sum based on the type of the components.

Ex. Let α be some position in some game of type R α + P\cupB

What is R's move?

- Since the $P \cup B$ game is type P, it doesn't change anything.
- Ignore $P \cup B$ game until L makes a move. Then respond in that component.
- Normal play games last move wins, so next player plas in other comp.

Prop. If β is type P, then α and $\alpha + \beta$ are the same type.

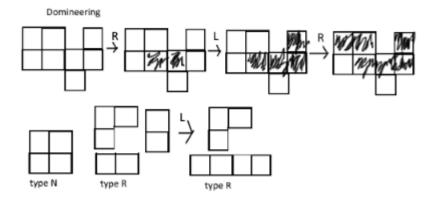
Prop. If α and β are both type L(R) then $\alpha + \beta$ is type L(R).

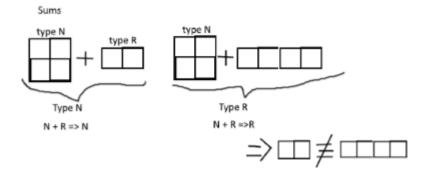
Т	L	R	Ν	Р
L	L	?	?	L
R	?	R	?	?
L R N P	?	?	?	Ν
Ρ	L	R	Ν	Ρ

1.3 Intermediate Sums

Domineering - cover some grid with dominoes which cover 2 spots at once.

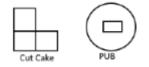
Assume R is horizontal, and L is vertical.





1.4 Equivalence

Move beyond one game at a time



The next player to move will win either game.

Def'n: Two positions α and α' in (possibly different) normal play games are equivalent if for every position β in any normal play games, the two positions $\alpha + \beta$ and $\alpha' + \beta$ have the same type.

Equivalence Relations

Prop. If α , β , δ are positions in normal play games.

- 1. $\alpha \equiv \alpha$ (reflexivity)
- 2. $\alpha \equiv \beta \rightarrow \beta = \alpha$ (symmetry)
- 3. $\alpha \equiv \beta$ and $\beta \equiv \delta \rightarrow \alpha \equiv \delta$ (transitivity)

How does equivalence relate to type?

• If two positions are equivalent \rightarrow they have the same type

Prop. If $\alpha \equiv \alpha'$, then they have the same type.

• Let β be a position in a normal play game with no moves left. $\alpha \leftrightarrow \alpha + \beta \leftrightarrow \alpha' + \beta \leftrightarrow \alpha'$

- Algebra w/ +, \equiv
- Prop. If $\alpha,\,\beta,\,\delta$ are positions in normal play games.
 - 1. $\alpha + \beta \equiv \beta + \alpha$ (commutably)
 - 2. $(\alpha + \beta) + \delta \equiv \alpha + (\beta + \delta)$ (associatably)

Lemma. Given position α , β , δ in normal play games

- 1. If $\alpha \equiv \alpha'$, then $\alpha + \beta \equiv \alpha' + \beta$
- 2. If $\alpha_i \equiv \alpha_i$ for $1 \leq i \leq n$, then $\alpha_i + \ldots + \alpha_n \equiv \alpha_i + \alpha_n$
- 3. If $\alpha_i \equiv \alpha_i$ for $1 \leq i \leq m$ and $\beta_j \equiv \beta_j$ ' for $1 \leq j \leq n$, then $\{\alpha_n, \alpha_m \beta_1, ..., \beta_n\} \equiv \{\alpha_1, ..., \alpha_n' \beta_1, ..., \beta_n\}$

Type P is equivalent to zero under normal addition. Lemma. If β is type P, then $\alpha + \beta = \alpha$

Prop. If α and α' are type P, then $\alpha \equiv \alpha' \rightarrow \alpha + \delta \equiv \delta \equiv \alpha' + \delta$

Lemma. If $\alpha + \beta$ and $\alpha' + \beta$ are both type P, then $\alpha \equiv \alpha'$

1.5

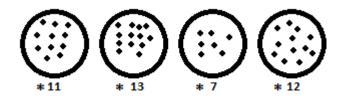
Cor. Every position in an impartial game is one of the following:

- Type N The next player to play has a winning strategy.
- Type P The previous (or second) player to play has a winning strategy.

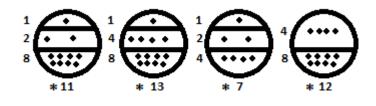
Cor. A position in an impartial game is:

- Type N If \exists a move to a position of type P.
- Type P If there is no move to a position of type P.

For convenience, # of stones in each pile



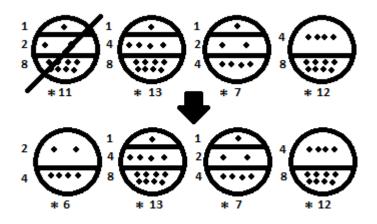
Def'n: Given a Nim position $*\alpha_1 + *\alpha_2 + ... + *\alpha_k$, it is balanced if, for every power of 2, the total # of subpiles of that size is even.



 $2^0+2^1+2^2+\ldots+2^n<2^{n+1}$

Procedure - Balance an unbalanced position:

- Let $*\alpha_1 + *\alpha_2 + \dots + *\alpha_k$ be an unbalanced game of Nim.
- Suppose 2^n is the largest power of 2 which there are an odd # of subpiles Curretly all subpiles of $2^i, j > m$ are balanced for every j; m, if there are an odd # of subpiles of S^j , excluding this pile, leave s^i stones. Since at least 2^m stones could be removed, and $2^0 + 2^i + \ldots + 2^{n-1} < 2^m$ stones should be left, this is a legal move.



Prop. Every balanced Nim position is type P and every unbalanced Nim position is type N.

1.6 Nimbers

Its helpful to think of Nim positions like #'s

- we call a stack $*\alpha$ a nimber
- \bullet Based on prop and that P doesn't additively change anything a type P position *0
- $\alpha \equiv \gamma$
- every balanced position $\gamma \equiv *0$

Imagine the 2^{nd} player could add a stack to the game before it starts Original $*a_1+\ldots+*a_L$

- \bullet add *b
- to a balanced position of type P to determine odd # of subpiles of 2^j

 $*a_1 + \ldots + *a_l + *b = *0$