Combinatorial Games

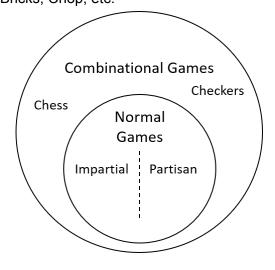
Notes for Week (Sept. 2nd - Sept. 6th) Team Q: Alissa Flores, Mauricio Flores, William Reckley, Roberto Rivas

Notes from lab (8/30):

- 3D-Tic-Tac-Toe is a first player win. First player has a forcing strategy with getting the center cell of the board.
- Hex is a first player win. We can assume that first player doesn't have a winning strategy. If the second player has a winning strategy than first player can steal it and use it and with the extra move they made, they win.
- Dots and Boxes: There is an importance on the double cross strategy. This strategy allows you to sacrifice 2 boxes in order to a bigger chain of boxes.
 - For more information: How to always win at Dots and Boxes Numberphile <u>https://www.youtube.com/watch?v=KboGylilP6k</u>

Normal Play Games

Definition: Where the winner is the last person to make a move Examples: Pick Up Bricks, Chop, etc.



Impartial definition: The same moves are available to both players Examples: Tic-Tac-Toe, Dots & Boxes

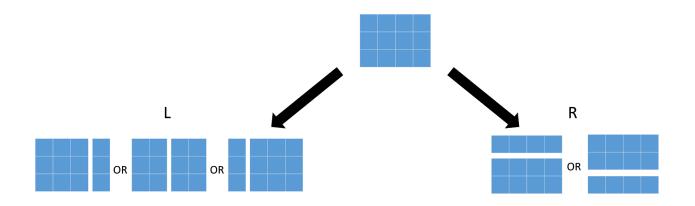
Partisan definition: Different moves available to each player Example: Cut-Cake

Positions and Types

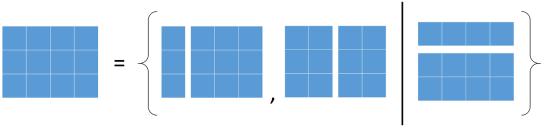
Normal Play games: set of position with a rule dictating which positions L & R can make.

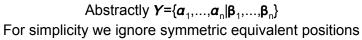
Cut-cake

- mxn grid (cake)
- L only makes vertical cuts
- R only make horizontal cuts
- Last player that can make a move (cut) wins



Position = { L's moves | R's moves }





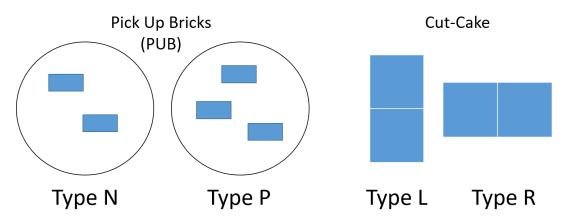
Types of positions

Zermelo's Theorem: Sometimes L or R has a winning position, Sometimes 1st or 2nd has winning position.

Correlation: Every position in a normal play games is one of the following:

Туре	Description		
L	Has a winning position regardless of who goes first		
R	Has a winning position regardless of who goes first		
Ν	The next player to go has a winning strategy		
Р	The previous to go has a winning strategy		

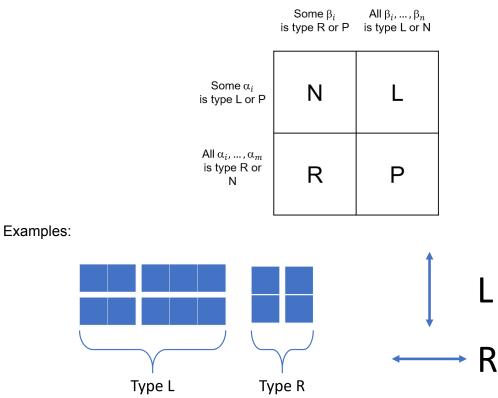
Examples:



Determining type

L moves first from position a and has a move to β of type L or P, a has a type N

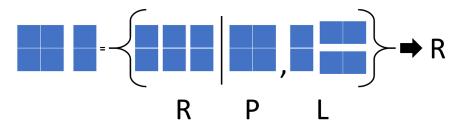
Proposition: If $\gamma = \{\alpha_i, \dots, \alpha_m \mid \beta_i, \dots, \beta_n\}$, the type of γ is given by the following

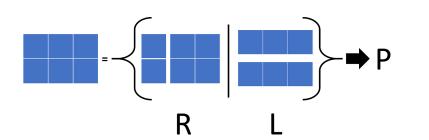


Cut Cake: The left player cuts vertically, and the right horizontally.

Given sample boards from Cut Cake and reviewing and labeling all moves that can be generated as N, R, L, and P we can then determine an overall type.

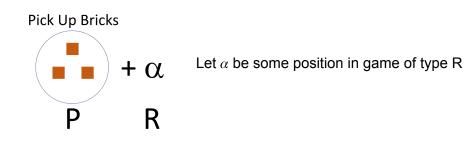
Examples: $= \oint_{R} = \oint_{R}$





Sums of Positions

Determine the position type based on the sum of its components.



What move should be made?

-Ignore P and play his winning strategy in lpha

-If L moves in Pick Up Bricks (PUB) he responds in PUB

Proposition: If β is type P, then α and α + β are the same type

Proposition: If both α and β are type L(R) then α + β is type L(R)

Types of Sums					
+	L	R	Ν	Ρ	
L	L	?	?	L	
R	?	R	?	R	
N	?	?	?	N	
Р	L	R	Ν	Р	

? = game/position specific

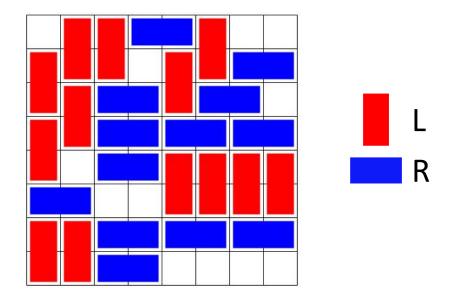
Determinate Sums - What we know (the letters)

Indeterminate Sums - What is unknown (the question marks)

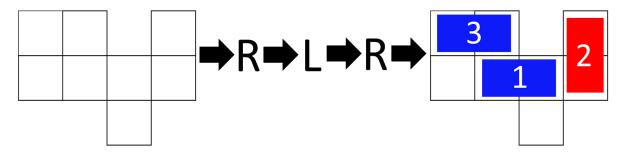
Indeterminate Sums

Domineering

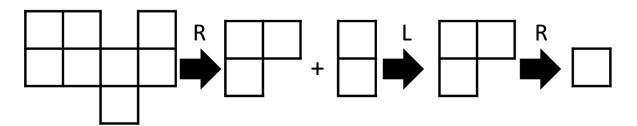
- 2 players in an m x n grid
- One player can only place vertical dominoes on the board while the other can only place horizontal dominoes
- Last player to make a move wins



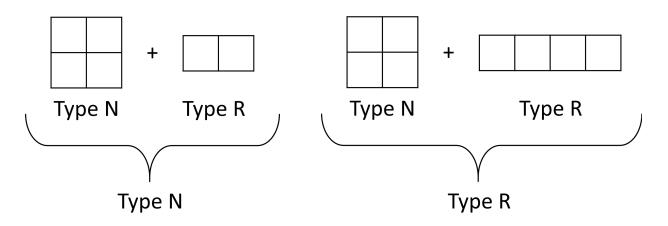
Example:



The figure above translates to the following:

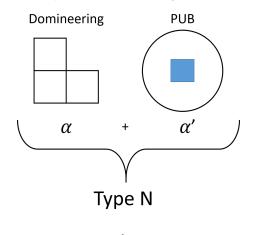


After viewing the previous, consider the following.



Equivalence

Definition: 2 positions α, α' in normal play games are equivalent if for every position β in any NPG, the two positions $\alpha+\beta$ and $\alpha'+\beta$ have the same type.



 $\alpha `\equiv \alpha$

Equivalence Relations

Proposition: If α , β , γ are position NPG, then

- 1. $\alpha \equiv \alpha'$ (reflexivity)
- 2. $\alpha \equiv \beta \rightarrow \beta \equiv \alpha$ (symmetry)
- 3. $\alpha \equiv \beta$ and $\beta \equiv \gamma \rightarrow \alpha \equiv \beta$ (transitivity)

 \neq

Proposition: If $\alpha \equiv \alpha'$, then they have the same type (this is only a one way relationship)

<u>Algebra</u> (+, ≡)

Proposition: If α, β, γ are positions in normal play games, then

- 1. $\alpha + \beta \equiv \beta + \alpha$ (commutativity)
- 2. $(\alpha + \beta) + \gamma \equiv \alpha + (\beta + \gamma)$ (associativity)

Lemma: Given positions α,β in NPG

- 1. If $\alpha \equiv \alpha'$ then $\alpha + \beta \equiv \alpha' + \beta$
- 2. If $\alpha_i \equiv \alpha'_i$ for $1 \le i \le n$, then $\alpha_i + \dots + \alpha_n \equiv \alpha'_i + \dots + \alpha'_n$
- 3. If $\alpha_i \equiv \alpha'_i$ for $1 \le i \le n$ and $\beta_j \equiv \beta'_j$ for $1 \le j \le n$, then $\{\alpha_1, ..., \alpha_n | \beta_1, ..., \beta_j\} \equiv \{\alpha'_1, ..., \alpha'_n | \beta'_1, ..., \beta'_j\}$.

Type P in NPG behave like 0 under addition

Lemma: If β is type, P, then $\alpha + \beta \equiv \alpha$

Proposition: If α and α' are type P, then $\alpha \equiv \alpha' \rightarrow \alpha + \gamma \equiv \gamma \equiv \alpha' + \gamma$

Lemma: If $\alpha + \beta$ and $\alpha' + \beta$ are both type P, then $\alpha \equiv \alpha'$

Impartial games

Definition: all players have the same moves available

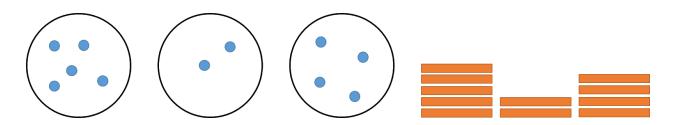
Every game position in an impartial game is either

Type N - there exist a move to a type p

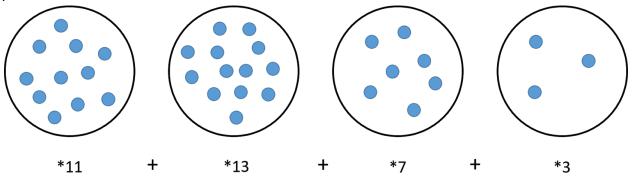
(essentially a there exists)

Type P - there are no moves to a type p (essentially a for all) Nim

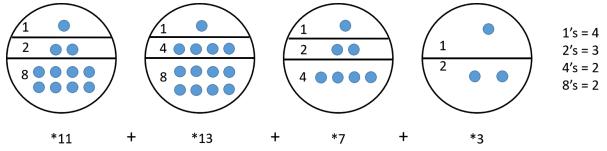
- an impartial game, where a position consists of x piles of stones of sizes a_1, \ldots, a_x
- To move a player removes 1 to a, stones from stack i



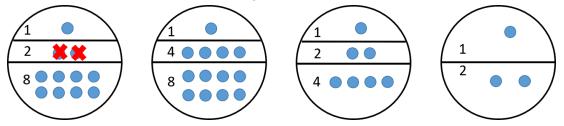
For ease of notation: use *a to denote a non negative integer a to denote that many stones in a pile.



Given a Nim position *a + ... *a_k, it is balanced if for every power of 2 the total number of sub-piles of that size is even.



After dividing, we must remove stones to make the amount sub-piles even. In this example the amount of 2's piles is odd with amount being 3.



After removing, it becomes balanced.

