Notes for Week (1/23-1/27): Combinatorial Games

What did we learn from Friday's lab

- 3D-Tic-Tac-Toe is a first player win. The strategy is to simply by taking the center cell.
- Hex is a first player win.
- Dots and Boxes: There is an importance on the double cross strategy

Normal Play Games

Definition: Where the winner is the last person to make a move, ex: pick up brick, chop, etc.

Impartial: same moves are available to both players, ex: tic-tac-toe, dots & boxes

Partisan: different moves available to each player, ex: cut-cake

Position and Types

Normal Play games: set of position with a rule dictating which positions L & R can make.

Cut-cake Input: mxn grid L only makes vertical cuts and R only make horizontal cuts Last player that can make a move wins

Images of cup cake

 $Y = \{a_1, \dots, a_n | \beta_1, \dots, \beta_n\}$ Types of positions Zermelo's Theorem: Sometimes L or R has a winning position, Sometimes 1st or 2nd has winning position.

Туре	Description		
L	Has a winning position regardless of who goes first		
R	Has a winning position regardless of who goes first		
Ν	The next player to go has a winning strategy		
Р	The previous to go has a winning strategy		

Examples of these types

Determining type

L moves first from position a and has a move to β of type L or P, a has a type N

<u>Proposition</u>: if $\gamma = \{\alpha_i, \dots, \alpha_m \mid \beta_i, \dots, \beta_n\}$, the type of γ is given by the following

Straight forward recursion process to determine type:

Sums of Positions

Determine the position type based on the sum of its components.

Pick Up Bricks

Let α be some position in game of type R

What move should be made?

-Ignore P and play his winning strategy in α

-If L moves in Pick Up Bricks (PUB) he responds in PUB

<u>Prop.</u> If β is type P, then α and α + β are the same type

<u>Prop.</u> If both α and β are type L(R) then α + β is type L(R)

+	L	R	Ν	Р
L	L	?	?	L
R	?	R	?	R
Ν	?	?	?	Ν
Р	L	R	Ν	Р

Type of Sums

? = game/position specific

Determinate Sums - What we know (the letters)

Indeterminate Sums - What is unknown (the question marks)

Indeterminate Sums

Example

Domineering: game played with 2 players in an m x n grid, were one player can only place vertical dominoes on the board while the other can only place horizontal dominoes. Last one to make a moves wins.

Equivalence

Definition: 2 positions α, α' in normal play games are equivalent if for every position β in any NPG, the two positions $\alpha+\beta$ and $\alpha'+\beta$ have the same type.

Equivalence relations

Prop. if α , β , γ are position NPG, then

- 1. $\alpha \equiv \alpha$ reflexivity
- 2. $\alpha \equiv \beta \rightarrow \beta \equiv \alpha$ Symmetry
- 3. $\alpha \equiv \beta$ and $\beta \equiv \gamma \rightarrow \alpha \equiv \beta$ transitivity

Prop. if $\alpha \equiv \alpha'$, then they have the same type (this is only a one way relationship)

Algebra with sums

Prop. if α, β, γ are positions in normal play games, then

- 1. $\alpha + \beta \equiv \beta + \alpha$ (commutativity)
- 2. $(\alpha + \beta) + \gamma \equiv \alpha + (\beta + \gamma)$ (associativity)

Lemma. Given positions α , β in NPG

1. If $\alpha \equiv \alpha'$ then $\alpha + \beta \equiv \alpha' + \beta$

2. If $\alpha_i \equiv \alpha'_i$ for $1 \leq i \leq n$, then $\alpha_i + \dots + \alpha_n \equiv \alpha'_i + \dots + \alpha'_n$

3. If $\alpha_i \equiv \alpha'_i$ for $1 \le i \le n$ and $\beta_j \equiv \beta'_j$ for $1 \le j \le n$, then $\{\alpha_1, ..., \alpha_n | \beta_1, ..., \beta_j\} \equiv \{\alpha'_1, ..., \alpha'_n | \beta'_1, ..., \beta'_i\}$.

Type P in NPG behave like 0 under addition

Lemma. If β is type, P, then $\alpha + \beta \equiv \alpha$ Prop. If α and α' are type P, then $\alpha \equiv \alpha' \rightarrow \alpha + \gamma \equiv \gamma \equiv \alpha' + \gamma$

Lemma. If $\alpha + \beta$ and $\alpha' + \beta$ are both type P, then $\alpha \equiv \alpha'$

Impartial games (all players have the same moves) Every game position in an impartial game is either Type N - there exist a move to a type p (essentially a there exists) Type P - there are no moves to a type p

(essentially a for all)

Nim - an impartial game, where a position consists of x piles of stones of sizes a_1, \ldots, a_x Move - a player removes 1 to a_i stones from stack i

For ease of notation: use *a to denote a non negative integer a to denote that many stones in a pile.

Given a Nim position *a + ... *a_k, it is balanced if for every power of 2 the total number of sub-piles of that size is even.