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Abstract. In this paper we introduce the robust coin flip problem in
which one must design an abstract tile assembly system (aTAM system)
whose terminal assemblies can be partitioned such that the final assem-
bly lies within either partition with exactly probability 1/2, regardless of
what relative concentration assignment is given to the tile types of the
system. We show that robust coin flipping is possible within the aTAM,
and that such systems can guarantee a worst case O(1) space usage. As
an application, we then combine our coin-flip system with the result of
Chandran, Gopalkrishnan, and Reif [3] to show that for any positive inte-
ger n, there exists a O(logn) tile system that assembles a constant-width
linear assembly of expected length n that works for all concentration as-
signments. We accompany our primary construction with variants that
show trade-offs in space complexity, initial seed size, temperature, tile
complexity, bias, and extensibility, and also prove some negative results.
Further, we consider the harder scenario in which tile concentrations
change arbitrarily at each assembly step and show that while this is not
solvable in the aTAM, this version of the problem can be solved by more
exotic tile assembly models from the literature.

1 Introduction

Self-assembly is the process by which local interactivity among unorganized,
autonomous units results in their amalgamation into compounds. One of the
premiere models for studying the theoretical possibilities of self-assembly is the
abstract tile assembly model (aTAM) [22] in which system monomers are 4-sided
Wang tiles that attach to a growing seed assembly whenever matching glues
present a sufficient bonding strength. The motivation for studying the aTAM
stems from the feasibility of a nanoscale DNA implementation [12], along with
the universal computational power of the model [19], which permits many fea-
tures including algorithmic self-assembly of general shapes [20], and more [8,17].

A promising new direction in self-assembly is the consideration of randomized
self-assembly systems. In randomized self-assembly (a.k.a. nondeterministic self-
assembly), assembly growth is dictated by nondeterministic, competing assembly
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paths yielding a probability distribution on a set of final, terminal assemblies.
By careful design of tile-sets and the relative concentration distributions of these
tiles, a number of new functionalities and efficiencies have been achieved that are
provably impossible without this non-determinism. For example, by precisely set-
ting the concentration values of a generic set of tile species, arbitrarily complex
strings of bits can be programmed into the system to achieve a specific shape
with high probability [9,15]. Alternately, if the concentration of the system is
assumed to be fixed at a uniform distribution, randomization still provides for
efficient expected growth of linear assemblies [3] and low-error computation at
temperature-1 [6]. Even in the case where concentrations are unknown, random-
ized self-assembly can build certain classes of shapes without error in a provably
more efficient manner than without randomization [2].

Motivated by the power of randomized self-assembly, along with the poten-
tial for even greater future impact, we focus on the development of the most
fundamental randomization primitive: the robust generation of a uniform ran-
dom bit. In particular, we introduce the problem of self-assembling a uniformly
random bit within O(1) space that is guaranteed to work for all possible con-
centration distributions. We define a tile system to be a coin flip system, with
respect to some tile concentration distribution, if the terminal assemblies of the
system can be partitioned such that each partition has exactly probability 1/2 of
assembling. We say a system is a robust coin flip system if such a partition exists
that guarantees 1/2 probability for all possible tile concentration distributions.
By designing systems that flip a fair coin for all possible (adversarially chosen)
concentration distributions, we achieve an intrinsically fair coin-flipping system
that is robust to the experimental realities of imprecise quantity measurements.
Such intrinsically fair systems may further allow for increased scalability of ran-
domized self-assembly systems in scenarios where exact concentrations of species
are either unknown or intractable to predict at successive assembly stages.

Our results. Our primary result is an aTAM construction that constitutes a
robust fair coin flip system which completes in a guaranteed O(1) space. We
apply our robust coin-flip construction to the result of Chandran, Gopalkrishnan,
and Reif [3] to show that for any positive integer n, there exists a O(log n) tile
system that assembles a constant width-4 linear assembly of expected length
n that works for all concentration assignments. We accompany this result with
a proof that such concentration independent assembly of width-1 assemblies
is not possible with fewer than n tile types. We further accompany our main
coin-flip construction with variant constructions that provide trade-offs among
standard aTAM metrics such as space, tile complexity, and temperature, as well
as new metrics such as coin bias, and the extensibility of the system, which is the
maximum number of distinct locations a single assembly of the system can add a
tile. We show that 1-extensible systems, while computationally universal, cannot
robustly coin-flip in bounded space without incurring a bias, but can robustly
coin-flip in bounded expected space. We also consider the more extreme model in
which concentrations may change adversarially at each assembly step. We show
that the aTAM cannot robustly coin flip in bounded space within this model,
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SUMMARY OF POSITIVE COIN FLIP RESULTS

Robust Coin Flip in the aTAM

Space Bias τ |σ| k -ext Theorem

O(1) - 1 7 2 1

O(1) - 2 1 2 2

unbounded - 2 1 1 4

c <p(c/2)+1 2 1 1 5

Unstable Concentrations
Robust Coin Flip

Model Space Bias τ |σ| Theorem

neg-aTAM O(1) - 1 2 9

neg-hTAM O(1) - 1 1 9

polyTAM O(1) - 2 3 9

GTAM O(1) - 1 2 9

Table 1: τ represents the temperature of the system, |σ| represents the number
of tiles in the seed assembly, and k -ext denotes the extensibility of the system.
p represents the largest disparity in relative tile concentration between any pair
of tile types in the system for a given concentration distribution.

but a number of more exotic extensions of the aTAM from the literature are
able to robustly coin flip in O(1) space. We summarize our results in Table 1.
The problem of self-assembling random bits has been considered before [11], but
their technique, and in fact almost all randomized techniques to date, do not
work when arbitrary concentrations are considered.

2 Definitions and Model

2.1 Tiles, Assemblies, and Tile Systems

Consider some alphabet of glue types Π. A tile is a unit square with 4 edges
each assigned some glue type from Π. Further, each glue type g ∈ Π has some
non-negative integer strength str(g). Each tile may be assigned a finite length
string label, e.g., “black”,“white”,“0”, or “1”. Further, for simplicity, we assume
each tile center is located at a pixel p = (p1, p2) ∈ Z2. For a given tile t, we
denote the tile center of t as its position. As notation, we denote the set of all
tiles that constitute all translations of the tiles in a set T as the set T ∗. An
assembly is a set of tiles each assigned unique coordinates in Z2. For a given
assembly α, define the bond graph Gα to be the weighted graph in which each
element of α is a vertex, and each edge weight between tiles is str(g) if the
tiles share an overlapping glue g, and 0 otherwise. An assembly α is said to be
τ -stable for a positive integer τ if the bond graph Gα has min-cut at least τ ,
and τ -unstable otherwise. A tile system is an ordered triple Γ = (T, σ, τ) where
T is a set of tiles called the tile set (we refer to elements of T as tile types), σ
is an assembly called the seed and τ is a positive integer called the temperature.
When considering a tile a that is some translation of an element of a tile set
T , we will use the term tile type of a to reference the element of T that a is a
translation of. Assembly proceeds by growing from assembly σ by any sequence
of single tile attachments from T so long as each tile attachment connects with
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strength at least τ . Formally, we define what can be built in this fashion as the
set of producible assemblies:

Definition 1 (Producibility). For a given tile system Γ = (T, σ, τ), the set
of producible assemblies for system Γ , PRODΓ , is defined recursively:

– (Base) σ ∈ PRODΓ
– (Recursion) For any A ∈ PRODΓ and b ∈ T ∗ such that C = A ∪ {b} is
τ -stable, then C ∈ PRODΓ .

As additional notation, we say A →Γ
1 B if A may grow into B through a

single tile attachment, and we say A →Γ B if A can grow into B through 0 or
more tile attachments. An assembly sequence for a tile system Γ is a sequence
(finite or infinite) −→α = 〈α1, α2, . . . 〉 in which α1 = σ, each αi+1 is a single-tile
extension of αi, and each αi is τ -stable. The frontier of an assembly α, written
as F (α, Γ ), is a partial function that maps an assembly α and a tile system Γ
to a set of tiles {t ∈ T ∗|α ∪ {t} ∈ PRODΓ ∧ t /∈ α}. We further define TERMΓ to
be the subset of PRODΓ consisting only of assemblies for which no further tile in
T may attach.

Definition 2 (Finiteness and Space). For a given tile assembly system Γ =
(T, σ, τ), we say Γ is finite iff ∀σ ∈ PRODΓ ,∃α ∈ TERMΓ : σ →Γ α. That is, each
producible assembly has a growth path ending in a finite, terminal assembly. If
Γ is not finite, we say it is infinite. Define the space of an assembly α as
|α|. Let the space of a tile assembly system be defined as the max

α∈TERMΓ
|α| iff

Γ is finite. If Γ is infinite, let space remain undefined. Note that a finite system
may have infinite/unbounded space.

Definition 3 (Extensibility). Consider a tile assembly system Γ = (T, σ, τ),
and assembly α ∈ PRODΓ . We denote the set of all locations at which a tile may
stably attach to α as Lα. More formally, Lα = {pt|t ∈ F (α, Γ )}. We say a tile
system Γ is k-extensible iff ∀α ∈ PRODΓ , |Lα| ≤ k. Informally, a tile assembly
system is k-extensible iff at any point in the assembly process, the assembly can
only grow in at most k locations.

2.2 Probability in Tile Assembly

We use the definition of probabilistic assembly presented in [1,3,6,15,9]. Let P
be a function denoting a concentration distribution over a tileset T repre-
senting the concentrations of each tile type with the restrictions ∀t ∈ T, P (t) > 0
and

∑
t∈T

P (t) = 1. For a tile t, we sometimes refer to P (t) as the concentra-

tion of t. Using a concentration distribution, we can consider probabilities for
certain events in the system. To study probabilistic assembly, we can consider
the assembly process as a Markov chain where each producible assembly is a
state and transitions occur with non-zero probability from assembly A to each
B whenever A →Γ

1 B. For each B that satisfies A →Γ
1 B, let tA→B denote the
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tile in T whose translation is added to A to get B. The transition probability
from A to B is defined to be

TRANS(A,B) =
P (tA→B)∑

{C|A→Γ
1 C}

P (tA→C)
(1)

The probability that a tile system Γ terminally assembles an assembly A is
defined to be the probability that the Markov chain ends in state A. For each
A ∈ TERMΓ , let PROBPΓ→A denote the probability that Γ terminally assembles A
with respect to concentration distribution P .

Definition 4 (Expected Space). For a given finite tile system Γ = (T, σ, τ),
let the expected space of Γ relative to a concentration distribution P be defined
as

EXPECTEDSPACEΓ =
∑

α∈TERMΓ

|α| · PROBPΓ→α (2)

Definition 5 (Coin Flipping). We consider a finite tile system Γ a coin
flip tile system with bias b with respect to a concentration distribution P
for some b ∈ R iff the set of terminal assemblies in PRODΓ is partitionable into

two sets X and Y such that

∣∣∣∣∣ ∑x∈X PROBPΓ→x −
∑
y∈Y

PROBPΓ→y

∣∣∣∣∣ ≤ 2b. A fair coin

flip tile system is a coin flip tile system with bias 0. We consider a finite
tile system Γ a robust coin flip tile system with bias b iff the set of ter-
minal assemblies in PRODΓ is partitionable into two sets X and Y such that∣∣∣∣∣ ∑x∈X PROBCΓ→x −

∑
y∈Y

PROBCΓ→y

∣∣∣∣∣ ≤ 2b for all concentration distributions C. A

robust fair coin flip tile system is a robust coin flip tile system with bias 0.

3 Robust Fair Coin Flipping in the aTAM

A

T

AH

A

Fig. 1: A non-robust fair
coin flip for the uniform con-
centration distribution.

In this section we show systems capable of robust
fair coin flips in the aTAM. Figure 1 shows a sim-
ple fair coin flip aTAM system for the uniform
concentration distribution. To solve this problem
for arbitrary concentration distributions, more in-
volved techniques are required.

Theorem 1. There exists a O(1) space 2-
extensible robust fair coin flip tile system
Γ = (T, σ, 1) in the aTAM with |σ| = 7.

Proof. To show this we present a tile system Γ = (T, σ, 1) in which two terminal
states exist and are equiprobable for all concentration distributions P . |T | = 9
and σ contains 7 tiles. The system terminates nondeterministically and contains
either 2 h tiles and 1 t tile or 2 t tiles and 1 h tile. The system leverages any
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A C
hA B CB t

A C A ChA B hA B CB t hA B CB t CB t

Fig. 2: Shown are the σ, h, and t tiles on the left, and the terminal states of the
assembly system representing heads and tails. A, B and C glues are strength 1.
Non-matching glues have 0 strength.

difference in tile concentrations between h and t by ensuring that placement of a
t tile increases the probability of terminating in an assembly containing 2h tiles
and vice versa. A graphical representation of σ, the h and t tiles, and terminal
states of the assembly system is shown in Figure 2. Without loss of generality,
assume the leftmost bottom tile in σ sits at position (0, 0). We will refer to each
producible assembly sans σ by the labels of the tiles in positions (1, 1), (2, 1) and

(3, 1) as such: t, h , ht and so forth. We now show that PROBPΓ→hht =
1

2
for

all concentration distributions P . Let ch be the concentration of the tile labeled
h and ct be the concentration of the tile labeled t, then

PROBPΓ→hht = TRANS(σ, t)·TRANS( t, ht)·TRANS( ht, hht)

+ TRANS(σ, t)·TRANS( t, h t)·TRANS(h t, hht)

+ TRANS(σ, h )·TRANS(h , h t)·TRANS(h t, hht)

=
ct

ct + ch
· ch
ch + ch

· ch
ch

+
ct

ct + ch
· ch
ch + ch

· ch
ct + ch

+
ch

ct + ch
· ct
ct + ct

· ch
ct + ch

=
ct

2 + 2ctch + ch
2

2ct2 + 4ctch + 2ch2
=

1

2
.

ut
3.1 Extension to a Single-Seed

A common constraint in the aTAM is that σ contains only one tile. Thus, no seed
structure must be formed prior to the self-assembly process. The construction
shown in Figure 3 addresses this constraint and works in a similar fashion as the
construction in Theorem 1. Note that this system requires τ = 2.

Theorem 2. There exists a O(1) space 2-extensible robust fair coin flip tile
system Γ = (T, σ, 2) in the aTAM with |σ| = 1.

Proof. Our tile set is shown in Figure 3. Without loss of generality, assume σ sits
at position (0, 0). Until the tile labeled S (see Figure 3) is placed, the assembly
process is deterministic. Upon attachment of S, cooperative binding locations
allow the attachment of tiles h and t nondeterministically. We denote the assem-
blies following the placement of S similarly to the proof of Theorem 1. We refer
to assemblies containing tile S by the labels of tiles in positions (1,−1), (1, 0) and
(2, 0) as t, h, ht and so forth. Reflecting the analysis shown in Theorem 1,
we have PROBPΓ→hht = .5 for all concentration distributions P , which implies
PROBPΓ→htt = .5 as there are two terminal assemblies. ut
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Fig. 3: T is shown. Our seed, labeled σ, begins a deterministic attachment process
ending with the placement of the tile labeled S. Glues labeled {1, 2, 3, . . . , 11}
are of strength 2. Glues labeled {A,B,C,D} are of strength 1, ensuring that the
nondeterministic attachments of tiles h and t do not begin until the cooperative
binding locations are opened by placement of the tile labeled S. The nondeter-
ministic sequence of attachments following the placement of S is similar to that
of Theorem 1.

3.2 1-Extensible Coin Flipping

The previous sections showcase 2-extensible solutions to the robust fair coin flip
problem. A natural question follows: is there a 1-extensible solution? Theorem 3
shows that there is no O(1) space solution in the aTAM. Using algorithms based
on John von Neumann’s randomness extractor [21] we can achieve an unbounded
space robust fair coin flip system (Theorem 4) as well as a O(1) space construc-
tion which incurs a small bias (Theorem 5).

Theorem 3. There does not exist a O(1) space 1-extensible robust fair coin flip
tile system in the aTAM.

Proof. We prove this by contradiction. Assume that there exists a O(1) space 1-
extensible robust fair coin flip aTAM tile system Γ = (T, σ, τ). We now specify
a concentration distribution for m tiles in T that contradicts this claim. As-
sume that Γ generates assemblies of size at most h. Consider a series of phases
p1, . . . , pn such that pi+1 is derived from pi by the attachment of the tile in the
frontier of pi with the largest concentration. Select a parameter t = 10mn3, and
let c1 = 1 and ci+1 = tci for i = 1, . . . ,m − 1. Let the concentration for each
ti ∈ T be ci

c1+c2+···+cm .
For each assembly pi, let qi1 , . . . , qiu be the set of tile types in the frontier

of pi listed in increasing order by their concentrations. Let ciu denote the con-
centration of tile type qiu . With probability

ciu
ci1+···+ciu

, tile type qiu is attached.

We have

ciu
ci1 + · · ·+ ciu

≥ 1
(u−1)ciu−1

ciu
+ 1

(3)

≥ 1
(u−1)
t + 1

≥ 1
m
t + 1

(4)

≥ 1
1

10n3 + 1
. (5)
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Algorithm 1 Unbounded

1: procedure UnboundedFCFE(h, t)
2: coin = {heads, tails}
3: pdist = {h, t}
4: repeat
5: flip 1← flip(coin, pdist)
6: flip 2← flip(coin, pdist)
7: until flip 1 6= flip 2
8: return flip 2
9: end procedure

Algorithm 2 Bounded

1: procedure BoundedFCFE(h, t, k)
2: coin = {heads, tails}
3: pdist = {h, t}
4: round← 1
5: while round ≤ k do
6: flip 1← flip(coin, pdist)
7: flip 2← flip(coin, pdist)
8: if flip 1 6= flip 2 then
9: return flip 2

10: end if
11: round← round+ 1
12: end while
13: return flip(coin, h, t)
14: end procedure

Therefore, with probability at least

(
1

1
10n3 + 1

)n
≥
(

1
1

10n3 + 1

)10n3· 1
10n2

(6)

≥
(

1

e

) 1
10n2

> 0.6 (7)

we follow the sequence p1, . . . , pn to generate an assembly. This is a contra-
diction. Note that we use the facts that (1 + 1

x )x is an increasing function for all
real x > 1, and limx→+∞(1 + 1

x )x = e ≈ 2.17828. ut

In response to Theorem 3, we give a 1-extensible aTAM system capable
of robust fair coin flips in unbounded space in Theorem 4. In 1951, John von
Neumann gave a simple method for extracting a fair coin from a biased one [21].
We show two algorithms based on the Von Neumann extractor. Algorithm 1 uses
an unbounded number of rounds to extract a fair coin flip. We use Algorithm 1 to
show that a fair coin flip extractor can be implemented in the aTAM to achieve
an unbounded space, 1-extensible, robust coin flip tile system. We extend this
method in Algorithm 2 to create a bounded fair coin flip extractor by adding a
parameter k which controls the maximum number of rounds allowed. This is a
bounded coin flip extractor that is implemented in the aTAM and achieves O(1)
space, is 1-extensible, and is a robust coin flip tile system with bounded bias.

We now describe our 1-extensible aTAM tile system that implements Algo-
rithm 1. In Algorithm 1, a coin is a set of cardinality 2 with possible values
heads and tails. flip is a function that selects and returns a heads or tails value
based on the probabilities h and t, where h, t ∈ (0, 1) and h + t = 1. In our
construction, calls to the flip function are carried out by a non-deterministic
competition for attachment between a 0 tile and a 1 tile. Aside from calls to
the flip function, the rest of the algorithm can be implemented by deterministic
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(a) Tile set that makes two nondeterministic flips corresponding to the two calls to the
flip function in 1.

F
1

1
D 1
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D 0

0
1 H

1
0 T

F
R

1
1 E

F
R

0
0 E
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D

G
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(b) Tile set that checks the result of the two flips and possibly starts another round
if a fair bit has not been achieved. A HEADS or TAILS tile is placed if a fair bit has
been achieved.

Fig. 4: The tile labeled S is the seed of the tile assembly system and the temper-
ature is 2. The strength of the glues are as follows: str(0)=1, str(1)=1, str(A)=2,
str(B)=2, str(C)=1, str(D)=1, str(F)=1, str(G)=2, str(R)=2, and str(R’)=2.

tile placements. Figure 4 gives the tile set used in the construction. Consider
all tiles labeled H as HEADS tiles and all tiles labeled T as TAILS tiles where
their placement implies the returning of heads and tails, respectively. Consider
all tiles labeled E as ERR tiles. The set of tiles in Figure 4(a) starts the process
and makes two non-deterministic placements of a 1 tile or a 0 tile. The set of
tiles in Figure 4(b) checks the result of the two flips. If the order of the flips,
starting from the left, is 10, it outputs a HEADS tile. If the order of the flips
is 01, it outputs a TAILS tile. Otherwise, it outputs an ERR tile, which starts
another loop. Figure 5 shows examples of assemblies that can grow in Round 1
of the algorithm. This construction yields Theorem 4. The full analysis of this
construction is omitted in this version due to space.

Theorem 4. There exists a 1-extensible, robust coin flip tile system in the
aTAM. The tile system achieves O(1/pq) expected space, where p and q de-
note the relative concentrations of the two tiles with the largest difference in
concentration for a given concentration distribution.

We now extend Algorithm 1 by adding a parameter k, which controls the
maximum number of rounds allowed (Algorithm 2). This bounded fair coin flip
extractor can be implemented in the aTAM to achieve a O(1) space, 1-extensible,
robust coin flip tile system with bounded bias. The bounded k-rounds can be
controlled by the implementation of a 1-extensible version the the aTAM counter
construction from [5] for a desired base, leading to a tradeoff in bias, space,
and tile complexity. We state the primary tradeoff in Theorem 5 between space
and bias, and omit the tradeoff in tile complexity in this version, as well as
construction details and analysis.

Theorem 5. There exists a c space 1-extensible robust coin flip tile system in
the aTAM with bias less than p(c/2)+1, where p denotes the larger relative con-
centration of the pair of tiles with the largest difference in concentration for a
given concentration distribution.
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(d) Two 0 tiles were
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(e) An assembly where
the first round of the al-
gorithm failed to gener-
ate a bit and proceeds
to start a new round.

C

AS AV
F
BA

F
RB

R'
R

R'
F F
R'0

F
F

F 0
1

F
F

F 1
G

F
C

g

C
D

G
g

F
1

1
D 1

0
1 H

(f) An assembly where
the first round of the
algorithm was a valid
flip and it generates a
heads.

Fig. 5: A sample of producible assemblies for Round 1

4 Robust Simulation of Randomized Linear Assemblies

As an application of the primitive shown in Theorem 2, we show that a class of
randomized linear aTAM tile assembly systems can be simulated in a concen-
tration robust manner with a minor scale factor.

We first briefly describe a scale (m,n)-simulation of a given tile system, based
on the block replacement schemes of [4]. Consider an aTAM system Γ = (T, σ, τ)
and a proposed simulator system Γ ′ = (T ′, σ′, τ ′). Now consider the mapping
from TERMΓ to TERMΓ ′ obtained by replacing each tile in an assembly A ∈ TERMΓ
with a rectangular m × n block of tiles over U , according to some fixed m × n
block mapping R. If there exists such a mapping M from TERMΓ to TERMΓ ′ that
is bijective, then we say that Γ ′ simulates the production of Γ at scale factor
(m,n). Further, we say that Γ robustly simulates Γ ′ for concentration distribu-
tion P if for all terminal assemblies A ∈ TERMΓ , PROBPΓ→A = PROBCΓ ′→M(A) for all

concentration distributions C over T ′, i.e., Γ ′ produces terminal assemblies with
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probability independent of concentration assignment, and with exactly the same
probability distribution as the concentration dependent system it simulates.

We now define a class of linear assembly systems for which we can construct
robust, concentration independent simulations.

Definition 6 (Unidirectional two-choice linear assembly systems). A
tile system Γ is a unidirectional two-choice linear assembly system iff:

1. Γ is 1-extensible,
2. ∀α ∈ PRODΓ , |F (α, Γ )| ≤ 2,
3. ∀β ∈ PRODΓ , β is a 1× n line for some n ∈ N.

Theorem 6. For any unidirectional two-choice linear assembly system Γ =
(T, σ, τ) in the aTAM, there is an aTAM system Γs = (T ′, σ′, τ ′) that robustly
simulates Γ for the uniform concentration distribution at scale factor 5 × 4;
further, |T ′| = c|T | for some constant c.

Proof. Let Γ = (T, σ, τ) be a unidirectional two-choice linear assembly sys-
tem. Define an undecided assembly to be any assembly α ∈ PRODΓ such that
|F (α, Γ )| = 2. For each undecided assembly, we will construct a gadget utilizing
the technique in Theorem 2. We call the two tiles of an undecided assembly’s
frontier h and t. Consider αh = α∪h and αt = α∪ t. We simulate Γ in reference
to a uniform concentration distribution, so α transitions to αh with probability
.5 and to αt with probability .5. Figure 6 shows an example of utilizing a 5× 4
gadget in Γs to simulate the transition from α to αh or αt. By application of
Theorem 2, the gadget will grow into one of two possible states with probability
.5 for any concentration distribution. By chaining the gadgets together we can
robustly simulate the nondeterministic attachments in Γ . Each tile is simulated
by a 5× 4 block of tiles, therefore |T ′| = c|T | for some constant c. ut

As a corollary to Theorem 6, we can create a tile system to build an expected
length n assembly for all concentration distributions with O(log n) tile complex-
ity. First, we will prove that there is no aTAM tile system which generates linear
(width-1) assemblies of expected length n for all concentration distributions ([3]
showed that this is possible for the uniform concentration distribution).

Theorem 7. There is no aTAM tile system to generate an assembly of width-1
and expected length n for all concentration distributions with less than n tile
complexity.

Proof. Towards a contradiction, assume a self-assembly system can generate a
linear assembly with expected length n and uses at most k < n tiles. There is at
least one assembly S that is of length at least n. Let S = t1 · · · ti−1ti · · · tmti...,
where ti · · · tmti is the first cycle that appears in S since there are less than n
tiles. We define the concentration of the types of tiles as follows:

Let c1 = 1, cj = cj−1/n
100 for j = 1, ..., k. The concentration of each type

ti is ci
c1+c2+···+ck . Therefore, with probability at least ( 1

1+ 1
n99

)n, the assembly
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Fig. 6: A simulation of one non-deterministic linear tile attachment. Each non-
determinstic attachment will require a 5×4 robust coin flip gadget shown in Fig.
3. The assembly may continue after simulating a non-determinstic attachment
by building another 5× 4 robust coin flip gadget, building a deterministic 5× 4
block, or terminating.

t1 · · · ti−1ti · · · tmti, or one at least as long, will be generated. With probability

at least ( 1
1+ 1

n99
)n

3

> 0.9, an assembly at least as long as t1 · · · ti−1(ti · · · tmti)n
2

...

will be generated, which has length at least n2. This contradicts the assumption
that the expected length is n. ut

We now contrast the width-1 impossibility result of Theorem 7 with a result
showing that width-4 linear assemblies do allow for efficient growth to expected
length n in a concentration independent manner. To achieve this, we apply The-
orem 6 to the unidirectional two-choice linear assembly system presented in [3],
which yields the following result.

Corollary 1. There exists an aTAM tile system Γ = (T, σ, τ) which terminates
in a width-4 expected length n assembly for all concentration distributions. |T | =
O(log n).

Proof. Let m be
⌊n

5

⌋
. Consider Γ = (T, σ, τ) to be a robust simulation at scale

factor 5×4 of a unidirectional two-choice linear assembly system that terminates
in an expected length m linear assembly using O(logm) tile types. Note that such
a unidirectional two-choice linear assembly system exists as shown in [3] and can
be robustly simulated as shown by Theorem 6. If 5m = n, then Γ terminates in
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an expected length n assembly with width-4; otherwise, we add n mod 5 length
deterministically. Since our scale factor is constant, |T | = O(log n). ut

5 Robust Fair Coins with Unstable Concentrations

As an extension to the idea of concentration independent solutions outlined in
this paper, we consider an adversarial model wherein the concentration distribu-
tion of tiles changes during each stage of the assembly process; in other words,
the concentrations are unstable.

Definition 7 (Unstable Concentrations Robust Fair Coin Flip). Let an
unstable concentration distribution P be a function mapping z ∈ Z+ to con-
centration distributions over a tile set T . Let Pi denote P (i). For each B that
satisfies A→Γ

1 B, let tA→B denote the tile in T whose translation is added to A
to get B. The transition probability from A to B is defined to be

TRANS(A,B) =
P|A|(tA→B)∑

{C|A→Γ
1 C}

P|A|(tA→C)
(8)

We consider a finite tile system Γ an unstable concentrations robust fair
coin flip iff the set of terminal assemblies in PRODΓ is partitionable into two sets
X and Y such that

∑
x∈X

PROBCΓ→x =
∑
y∈Y

PROBCΓ→y for all unstable concentration

distributions C.

We now prove that there is no unstable concentration robust fair coin flip
system in the aTAM. First, we state and prove a lemma that will be useful in
our proof.

Lemma 1. For any producible assembly A ∈ PRODΓ and any tile type t ∈ T ,
there exists another assembly A∗ such that for any sequence of assemblies 〈A0 =
A,A1, A2, . . . , Ah〉 where Ai+1 is derived from Ai by attaching a tile of type t
(i = 0, 1, 2, · · · , h− 1), and tile type t cannot be attached to Ah, then Ah = A∗.

Proof. Let A∗ be the least-sized producible assembly such that A∗ \A contains
only tiles of type t and the frontier of A∗ contains no tiles of type t. We will
show that A can only grow A∗ if only allowed to attach tile type t.

Towards a contradiction, assume there exists a sequence of assemblies from
A such that Ah 6= A∗. If Ah is some subassembly of A∗, note that we may still
attach tiles of type t to reach A∗, implying that Ah does not fit the specified
requirements. Otherwise, let An be the first assembly in the sequence which
contains a tile not in A∗. Consider An−1. There is no tile of type t attachable to
An−1 such that the tile is not in A∗. If there were, that tile of type t would be
attachable to A∗, contradicting the definition of A∗. Therefore no such An can
exist, implying that Ah must be A∗.

Theorem 8. There does not exist a O(1) space unstable concentrations robust
fair coin flip tile system in the aTAM.
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Proof. Towards a contradiction, assume that a space-n solution does exist.
As the assembly process proceeds, the key point to consider is when the cur-

rent assembly enters a state in which multiple distinct positions may attach a
tile. In such a case select one type t of all attachable tiles, and increase its con-
centration to ensure, with high probability, that assembly proceeds by attaching
only tiles of type t up until there is no position to attach type t tiles. Such a
type t is called a dominate type. Let the concentration of the dominate tile type
t be (1− 1

100n2 ). For each step i, let ti denote the dominate type of concentration
(1− 1

100n2 ).
When there is more than one position to attach the same type of tile t, we are

assured by Lemma 1 that a unique assembly will result after repeatedly placing
tiles of type t (in any order) until placement of t is no longer an option.

Given this setup, we have that at each step i, the assembly does not grow
with a dominate type with probability at most 1

10n2 . With probability at most
1

10n , there is a step i among n steps that the assembly does not grow with the
dominate type.

Therefore, there is a terminal assembly that will be generated with probabil-
ity at least 0.9. This is a contradiction. ut

Motivated by the impossibility of robust coin flipping in the aTAM under un-
stable concentrations, we now consider some established extensions of the aTAM
from the literature. In particular, we show that robust coin flipping with unsta-
ble concentrations is possible within the aTAM with negative glues [22,10,18],
the polyTAM [13], the hexTAM [7] with negative glues, and the GTAM [14].

Theorem 9. There exists a O(1) space unstable concentration robust fair coin-
flip tile system in the aTAM with negative glues, polyTAM, hexTAM with nega-
tive glues, and the GTAM.

Proof. Consider a tile assembly system Γ = (T, σ, τ) with 3 producible assem-
blies: σ, a terminal assembly heads, and a terminal assembly tails. Further,
σ →Γ

1 heads and σ →Γ
1 tails. Let tσ→heads and tσ→tails be the same tile c, then

TRANS(σ, heads) = TRANS(σ, tails) = P (c)
2P (c) = 1

2 . Systems which meet these

characteristics within the mentioned models can be seen in Figure 7.
ut

6 Conclusions and Future Work

In this paper we have introduced the problem of designing robust, fair coin
flipping systems. Generating such coin flips is fundamental for the implemen-
tation of randomized self-assembly algorithms. By incorporating concentration
independent robustness into the design of such systems, we directly address the
practical issue of limited control over species concentrations. Our goal in this
work is to provide a stepping stone for the creation of general, robust random-
ized self-assembly systems. As evidence towards the feasibility of this goal, we
have shown how our gadgets can be applied to convert a large class of linear
systems into equivalent systems with the concentration robustness property. A
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Fig. 7: The terminal assemblies representing “heads” in some alternate models.
C is a strength-τ glue and N is a strength-(−1) glue in (a) the aTAM tile system
and (b) the hexTAM tile system. (c) C is a strength-1 glue in a τ = 2 polyTAM
tile system. (d) C is a strength-1 glue in a τ = 1 GTAM tile system. The abutting
geometry does not allow two C tiles to attach.

more general open problem is as follows: given a general tile system, is it possible
to convert the system to an approximately equivalent system that is concentra-
tion robust? If possible, how efficiently can this be accomplished in terms of scale
factor and approximation factor?

Another direction for future work is the consideration of generalizations of
the coin flip problem. Our partition definition for coin flip systems extends nat-
urally to distributions with more than two outcomes, as well as non-uniform
distributions. What general probability distributions can be assembled in O(1)
space, and with what efficiency? We have also introduced the online variant of
concentration robustness in which species concentrations may change at each
step of the self-assembly process. We have shown that when such changes are
completely arbitrary, coin flipping is not possible in the aTAM. A relaxed version
of this robustness constraint could permit concentration changes to be bounded
by some fixed rate. In such a model, how close to a fair flip can a system guar-
antee in terms of the given rate bound? As an additional relaxation, one could
consider the problem in which an initial concentration assignment may be ap-
proximately set by the system designer, thereby modeling the limited precision
an experimenter can obtain with a pipette.

A final line of future work focusses on applying randomization in self-assembly
to computing functions. The parallelization within the abstract tile assembly
model allows for substantially faster arithmetic than what is possible in non-
parallel computational models [16]. Can randomization be applied to solve these
problems even faster? Moreover, there are a number of potentially interesting
problems that might be helped by randomization, such as primality testing,
sorting, or a general simulation of randomized boolean circuits.
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