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Abstract. The problem of efficiently computing and visualizing the
structural resemblance between a pair of protein backbones in 3D has
led Bereg et al. [4] to pose the Chain Pair Simplification problem (CPS).
In this problem, given two polygonal chains A and B of lengths m and n,
respectively, one needs to simplify them simultaneously, such that each
of the resulting simplified chains, A′ and B′, is of length at most k and
the discrete Fréchet distance between A′ and B′ is at most δ, where k
and δ are given parameters. In this paper we study the complexity of
CPS under the discrete Fréchet distance (CPS-3F), i.e., where the quality
of the simplifications is also measured by the discrete Fréchet distance.
Since CPS-3F was posed in 2008, its complexity has remained open. In
this paper, we prove that CPS-3F is actually polynomially solvable, by
presenting an O(m2n2 min{m,n}) time algorithm for the corresponding
minimization problem. On the other hand, we prove that if the vertices of
the chains have integral weights then the problem is weakly NP-complete.

1 Introduction

Polygonal curves play an important role in many applied areas, such as 3D
modeling in computer vision, map matching in GIS, and protein backbone
structural alignment and comparison in computational biology. Many different
methods exist to compare curves in these (and in many other) applications, where
one of the more prevalent methods is the Fréchet distance [8].

The Fréchet distance is often described by an analogy of a man and a dog
connected by a leash, each walking along a curve from its starting point to its end
point. Both the man and the dog can control their speed but they are not allowed
? A complete version including the one-sided cases and empirical results can be found
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to backtrack. The Fréchet distance between the two curves is the minimum length
of a leash that is sufficient for traversing both curves in this manner.

The discrete Fréchet distance is a simpler version, where, instead of continuous
curves, we are given finite sequences of points, obtained, e.g., by sampling the
continuous curves, or corresponding to the vertices of polygonal chains. Now,
the man and the dog only hop monotonically along the sequences of points. The
discrete Fréchet distance is considered a good approximation of the continuous
distance.

One promising application of the discrete Fréchet distance has been protein
backbone comparison. Within structural biology, polygonal curve alignment and
comparison is a central problem in relation to proteins. Proteins are usually
studied using RMSD (Root Mean Square Deviation), but recently the discrete
Fréchet distance was used to align and compare protein backbones, which yielded
favourable results in many instances [9, 10]. In this application, the discrete version
of the Fréchet distance makes more sense, because by using it the alignment is
done with respect to the vertices of the chains, which represent α-carbon atoms.
Applying the continuous Fréchet distance will result in mapping of arbitrary
points, which is not meaningful biologically.

There may be as many as 500∼600 α-carbon atoms along a protein backbone,
which are the nodes (i.e., points) of our chain. This makes efficient computation
essential, and is one of the reasons for considering simplification. In general, given
a chain A of n vertices, a simplification of A is a chain A′ such that A′ is “close”
to A and the number of vertices in A′ is significantly less than n. The problem
of simplifying a 3D polygonal chains under the discrete Fréchet distance was first
addressed by Bereg et al. [4].

(a) Simplifying the chains
independently does not
necessarily preserve the re-
semblance between them.

(b) A simplification of both
chains that preserves the re-
semblance between them.

Fig. 1: Independent simplification vs. simultaneous simplification. Each chain simplifi-
cation consists of 4 vertices (marked by empty circles) chosen from the corresponding
chain. The unit disks illustrate the Fréchet distance between the right chain in each of
the figures and its corresponding simplification; their radius in (b) is larger.
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Simplifying two aligned chains independently does not necessarily preserve the
resemblance between the chains; see Figure 1. Thus, the following question arises:
Is it possible to simplify both chains in a way that will retain the resemblance
between them? This question has led Bereg et al. [4] to pose the Chain Pair
Simplification problem (CPS). In this problem, the goal is to simplify both
chains simultaneously, so that the discrete Fréchet distance between the resulting
simplifications is bounded. More precisely, given two chains A and B of lengths m
and n, respectively, an integer k and three real numbers δ1,δ2,δ3, one needs to find
two chains A′,B′ with vertices from A,B, respectively, each of length at most k,
such that d1(A,A′) ≤ δ1, d2(B,B′) ≤ δ2, ddF (A′, B′) ≤ δ3 (d1 and d2 can be any
similarity measures and ddF is the discrete Fréchet distance). When the chains
are simplified using the Hausdorff distance, i.e., d1, d2 is the Hausdorff distance
(CPS-2H), the problem becomes NP-complete [4]. However, the complexity of
the version in which d1, d2 is the discrete Fréchet distance (CPS-3F) has been
open since 2008.

Related work The Fréchet distance and its variants have been studied extensively
in the past two decades. Alt and Godau [2] gave an O(mn logmn)-time algorithm
for computing the Fréchet distance between two polygonal curves of lengths m
and n. This result in the plane was recently improved by Buchin et al [5]. The
discrete Fréchet distance was originally defined by Eiter and Mannila [7], who also
presented an O(mn)-time algorithm for computing it. A slightly sub-quadratic
algorithm was given recently by Agarwal et al. [1].

As mentioned earlier, Bereg et al. [4] were the first to study simplification
problems under the discrete Fréchet distance. They considered two such problems.
In the first, the goal is to minimize the number of vertices in the simplification,
given a bound on the distance between the original chain and its simplification,
and, in the second problem, the goal is to minimize this distance, given a bound
k on the number of vertices in the simplification. They presented an O(n2)-time
algorithm for the former problem and an O(n3)-time algorithm for the latter
problem, both using dynamic programming, for the case where the vertices of
the simplification are from the original chain. (For the arbitrary vertices case,
they solve the problems in O(n log n) time and in O(kn log n log(n/k)) time,
respectively.) Driemel and Har-Peled [6] showed how to preprocess a polygonal
curve in near-linear time and space, such that, given an integer k > 0, one can
compute a simplification in O(k) time which has 2k − 1 vertices of the original
curve and is optimal up to a constant factor (w.r.t. the continuous Fréchet
distance), compared to any curve consisting of k arbitrary vertices.

For the chain pair simplification problem (CPS), Bereg et al. [4] proved that
CPS-2H is NP-complete, and conjectured that so is CPS-3F. Wylie et al. [10]
gave a heuristic algorithm for CPS-3F, using a greedy method with backtracking,
and based on the assumption that the (Euclidean) distance between adjacent
α-carbon atoms in a protein backbone is almost fixed. More recently, Wylie and
Zhu [11] presented an approximation algorithm with approximation ratio 2 for the
optimization version of CPS-3F. Their algorithm actually solves the optimization
version of a related problem called CPS-3F+, it uses dynamic programming
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and its running time is between O(mn) and O(m2n2) depending on the input
simplification parameters.

Some special cases of CPS-3F have recently been studied. Motivated by the
need to reduce sensitivity to outliers when comparing curves, Ben Avraham et
al. [3] studied the discrete Fréchet distance with shortcuts problem. Both variants
of the shortcuts problem can be solved in subquadratic time.

Our results In Section 3, we resolve the question concerning the complexity of
CPS-3F by proving that it is polynomially solvable, contrary to what was believed.
We do this by presenting a polynomial-time algorithm for the corresponding
optimization problem. In Section 4 we devise a sophisticated O(m2n2 min{m,n})-
time dynamic programming algorithm for the minimization problem of CPS-3F.
Besides being interesting from a theoretical point of view, only after developing
(and implementing) this algorithm, were we able to apply the CPS-3F minimiza-
tion problem to datasets from the Protein Data Bank (PDB), see the full version
for the actual empirical results. Finally, in Section 5 we prove that the problem
is weakly NP-complete if the vertices of the chains carry integral weights.

2 Preliminaries

Let A = (a1 . . . , am) and B = (b1, . . . , bn) be two sequences of m and n points,
respectively, in Rk. The discrete Fréchet distance ddF (A,B) between A and B
is defined as follows. Fix a distance δ > 0 and consider the Cartesian product
A×B as the vertex set of a directed graph Gδ whose edge set is

Eδ =
{(

(ai, bj), (ai+1, bj)
)
| d(ai, bj), d(ai+1, bj) ≤ δ

}
∪{(

(ai, bj), (ai, bj+1)
)
| d(ai, bj), d(ai, bj+1) ≤ δ

}
∪{(

(ai, bj), (ai+1, bj+1)
)
| d(ai, bj), d(ai+1, bj+1) ≤ δ

}
.

Then ddF (A,B) is the smallest δ > 0 for which (am, bn) is reachable from (a1, b1)
in Gδ.

The chain pair simplification problem (CPS) is formally defined as follows.

Problem 1 (Chain Pair Simplification).
Instance: Given a pair of polygonal chains A and B of lengths m and n,
respectively, an integer k, and three real numbers δ1, δ2, δ3 > 0.
Problem: Does there exist a pair of chains A′,B′ each of at most k vertices,
such that the vertices of A′,B′ are from A,B, respectively, and d1(A,A′) ≤ δ1,
d2(B,B′) ≤ δ2, and ddF (A′, B′) ≤ δ3?

When d1 = d2 = dH , the problem is NP-complete and is called CPS-2H, and
when d1 = d2 = ddF , the problem is called CPS-3F.
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3 Chain Pair Simplification (CPS-3F)

We now turn our attention to CPS-3F, which we show to be polynomially solvable
in this section. We comment that the running time and space for this solution is
O(m3n3 min{m,n}) and O(m3n3) respectively, hence this solution is impractical
for most of the real protein chains (with m,n as large as 500-600). Nonetheless,
this first solution is easier to understand and can be considered as a warm-up. We
will present a much better (but more sophisticated) solution in the next section.

We present an algorithm for the minimization version of CPS-3F. That is,
we compute the minimum integer k∗, such that there exists a “walk”, as above,
in which each of the dogs makes at most k∗ hops. The answer to the decision
problem is “yes” if and only if k∗ < k.

Returning to the analogy of the man and the dog, we can extend it as follows.
Consider a man and his dog connected by a leash of length δ1, and a woman
and her dog connected by a leash of length δ2. The two dogs are also connected
to each other by a leash of length δ3. The man and his dog are walking on the
points of a chain A and the woman and her dog are walking on the points of a
chain B. The dogs may skip points. The problem is to determine whether there
exists a “walk” of the man and his dog on A and the woman and her dog on B,
such that each of the dogs steps on at most k points.

Overview of the algorithm We say that (ai, ap, bj , bq) is a possible configuration
of the man, woman and the two dogs on the paths A and B, if d(ai, ap) ≤ δ1,
d(bj , bq) ≤ δ2 and d(ap, bq) ≤ δ3. Notice that there are at most m2n2 such config-
urations. Now, let G be the DAG whose vertices are the possible configurations,
such that there exists a (directed) edge from vertex u = (ai, ap, bj , bq) to vertex
v = (ai′ , ap′ , bj′ , bq′) if and only if our gang can move from configuration u to
configuration v. That is, if and only if i ≤ i′ ≤ i+ 1, p ≤ p′, j ≤ j′ ≤ j + 1, and
q ≤ q′. Notice that there are no cycles in G because backtracking is forbidden. For
simplicity, we assume that the first and last points of A′ (resp., of B′) are a1 and
am (resp., b1 and bn), so the initial and final configurations are s = (a1, a1, b1, b1)
and t = (am, am, bn, bn), respectively. (It is easy, however, to adapt the algorithm
below to the case where the initial and final points of A′ and B′ are not specified,
see remark below.) Our goal is to find a path from s to t in G. However, we want
each of our dogs to step on at most k points, so, instead of searching for any
path from s to t, we search for a path that minimizes the value max{|A′|, |B′|},
and then check if this value is at most k.

For each edge e = (u, v), we assign two weights, wA(e), wB(e) ∈ {0, 1}, in
order to compute the number of hops in A′ and in B′, respectively. wA(u, v) = 1
if and only if the first dog jumps to a new point between configurations u and v
(i.e., p < p′), and, similarly, wB(u, v) = 1 if and only if the second dog jumps to
a new point between u and v (i.e., q < q′). Thus, our goal is to find a path P
from s to t in G, such that max{

∑
e∈P

wA(e),
∑
e∈P

wB(e)} is minimized.

Assume w.l.o.g. that m ≤ n. Since |A′| ≤ m and |B′| ≤ n, we maintain, for
each vertex v of G, an array X(v) of size m, where X(v)[r] is the minimum
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number z such that v can be reached from s with (at most) r hops of the first
dog and z hops of the second dog. We can construct these arrays by processing
the vertices of G in topological order (i.e., a vertex is processed only after all
its predecessors have been processed). This yields an algorithm of running time
O(m3n3 min{m,n}), as described in Algorithm 1.

Algorithm 1 CPS-3F

1. Create a directed graph G = (V,E) with two weight functions wA, wB , such that:
– V is the set of all configurations (ai, ap, bj , bq) with d(ai, ap) ≤ δ1, d(bj , bq) ≤ δ2,

and d(ap, bq) ≤ δ3.
– E = {((ai, ap, bj , bq), (ai′ , ap′ , bj′ , bq′)) | i ≤ i′ ≤ i+1, p ≤ p′, j ≤ j′ ≤ j+1, q ≤
q′}.

– For each ((ai, ap, bj , bq), (ai′ , ap′ , bj′ , bq′)) ∈ E, set

• wA((ai, ap, bj , bq), (ai′ , ap′ , bj′ , bq′)) =

(
1, p < p′

0, otherwise

• wB((ai, ap, bj , bq), (ai′ , ap′ , bj′ , bq′)) =

(
1, q < q′

0, otherwise

2. Sort V topologically.
3. Initialize the array X(s) (i.e., set X(s)[r] = 0, for r = 0, . . . ,m− 1).
4. For each v ∈ V \ {s} (advancing from left to right in the sorted sequence) do:

(a) Initialize the array X(v) (i.e., set X(v)[r] =∞, for r = 0, . . . ,m− 1).
(b) For each r between 0 and m− 1, compute X(v)[r]:

X(v)[r] = min
(u, v) ∈ E

(
X(u)[r] + wB(u, v), wA(u, v) = 0

X(u)[r − 1] + wB(u, v), wA(u, v) = 1

5. Return k∗ = min
r

max{r, X(t)[r]} .

Running time The number of vertices in G is |V | = O(m2n2). By the construction
of the graph, for any vertex (ai, ap, bj , bq) the maximum number of outgoing
edges is O(mn). So we have |E| = O(|V |mn) = O(m3n3). Thus, constructing
the graph G in Step 1 takes O(n3m3) time. Step 2 takes O(|E|) time, while
Step 3 takes O(m) time. In Step 4, for each vertex v and for each index r,
we consider all configurations that can directly precede v. So each edge of G
participates in exactly m minimum computations, implying that Step 4 takes
O(|E|m) time. Step 5 takes O(m) time. Thus, the total running time of the
algorithm is O(m4n3).

Theorem 1. The chain pair simplification problem under the discrete Fréchet
distance (CPS-3F) is polynomial, i.e., CPS-3F ∈ P.

Remark 1. As mentioned, we have assumed that the first and last points of
A′ (resp., B′) are a1 and am (resp., b1 and bn), so we have a single initial
configuration (i.e., s = (a1, a1, b1, b1)) and a single final configuration (i.e., t =
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(am, am, bn, bn)). However, it is easy to adapt our algorithm to the case where
the first and last points of the chains A′ and B′ are not specified. In this case,
any possible configuration of the form (a1, ap, b1, bq) is considered a potential
initial configuration, and any possible configuration of the form (am, ap, bn, bq) is
considered a potential final configuration, where 1 ≤ p ≤ m and 1 ≤ q ≤ n. Let S
and T be the sets of potential initial and final configurations, respectively. (Then,
|S| = O(mn) and |T | = O(mn).) We thus remove from G all edges entering a
potential initial configuration, so that each such configuration becomes a “root”
in the (topologically) sorted sequence. Now, in Step 3 we initialize the arrays of
each s ∈ S in total time O(m2n), and in Step 4 we only process the vertices that
are not in S. The value X(v)[r] for such a vertex v is now the minimum number
z such that v can be reached from s with r hops of the first dog and z hops of
the second dog, over all potential initial configurations s ∈ S. In the final step of
the algorithm, we calculate the value k∗ in O(m) time, for each potential final
configuration t ∈ T . The smallest value obtained is then the desired value. Since
the number of potential final configurations is only O(mn), the total running
time of the final step of the algorithm is only O(m2n), and the running time of
the entire algorithm remains O(m4n3).

4 An Efficient Implementation

The time and space complexity of Algorithm 1 (which is O(m3n3 min {m,n})
and O(m3n3), respectively) makes it impractical for our motivating biological
application (as m,n could be 500∼600). In fact, when m,n are around 200 we
already had memory overflows in the implemented Algorithm 1. In this section,
we show how to reduce the time and space bounds by a factor of mn, using
dynamic programming.

We generate all configurations of the form (ai, ap, bj , bq), where the outermost
for-loop is governed by i, the next level loop by j, then p, and finally q. When
a new configuration v = (ai, ap, bj , bq) is generated, we first check whether it is
possible. If it is not possible, we set X(v)[r] =∞, for 1 ≤ r ≤ m, and if it is, we
compute X(v)[r], for 1 ≤ r ≤ m.

We also maintain for each pair of indices i and j, three tables Ci,j , Ri,j , Ti,j
that assist us in the computation of the values X(v)[r]:

Ci,j [p, q, r] = min
1≤p′≤p

X(ai, ap′ , bj , bq)[r]

Ri,j [p, q, r] = min
1≤q′≤q

X(ai, ap, bj , bq′)[r]

Ti,j [p, q, r] = min
1≤p′≤p
1≤q′≤q

X(ai, ap′ , bj , bq′)[r]
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Notice that the value of cell [p, q, r] is determined by the value of one or two
previously-determined cells and X(ai, ap, bj , bq)[r] as follows:

Ci,j [p, q, r] = min{Ci,j [p− 1, q, r], X(ai, ap, bj , bq)[r]}
Ri,j [p, q, r] = min{Ri,j [p, q − 1, r], X(ai, ap, bj , bq)[r]}
Ti,j [p, q, r] = min{Ti,j [p− 1, q, r], Ti,j [p, q − 1, r], X(ai, ap, bj , bq)[r]}

Observe that in any configuration that can immediately precede the current
configuration (ai, ap, bj , bq), the man is either at ai−1 or at ai and the woman is
either at bj−1 or at bj (and the dogs are at ap′ , p′ ≤ p, and bq′ , q′ ≤ q, respectively).
The “saving” is achieved, since now we only need to access a constant number of
table entries in order to compute the value X(ai, ap, bj , bq)[r].

ai

bj

ai−1

bj−1

Fig. 2: Illustration of Algorithm 2.

One can illustrate the algorithm using the matrix in Figure 2. There are mn
large cells, each of them containing a matrix of size mn. The large cells correspond
to the positions of the man and the woman. The inner matrices correspond to the
positions of the two dogs (for given positions of the man and woman). Consider
an optimal “walk” of the gang that ends at cell (ai, ap, bj , bq) (marked by a full
circle), such that the first dog has visited r points. The previous cell in this
“walk” must be in one of the 4 large cells (ai, bj),(ai−1, bj),(ai, bj−1),(ai−1, bj−1).
Assume, for example, that it is in (ai−1, bj). Then, if it is in the blue area, then
X(ai, ap, bj , bq)[r] = Ci−1,j [p−1, q, r−1] (marked by an empty square), since only
the position of the first dog has changed when the gang moved to (ai, ap, bj , bq). If
it is in the purple area, then X(ai, ap, bj , bq)[r] = Ri−1,j [p, q−1, r]+1 (marked by
a x), since only the position of the second dog has changed. If it is in the orange
area, then X(ai, ap, bj , bq)[r] = Ti−1,j [p− 1, q− 1, r− 1] + 1 (marked by an empty
circle), since the positions of both dogs have changed. Finally, if it is the cell
marked by the full square, then simply X(ai, ap, bj , bq)[r] = X(ai−1, ap, bj , bq)[r],
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since both dogs have not moved. The other three cases, in which the previous cell
is in one of the 3 large cells (ai, bj),(ai, bj−1),(ai−1, bj−1), are handled similarly.

Algorithm 2 CPS-3F using dynamic programming
for i = 1 to m

for j = 1 to n
for p = 1 to m

for q = 1 to n
for r = 1 to m

X(−1,0) = min

8>>><>>>:
Ci−1,j [p− 1, q, r − 1]

Ri−1,j [p, q − 1, r] + 1

Ti−1,j [p− 1, q − 1, r − 1] + 1

X(ai−1, ap, bj , bq)[r]

X(0,−1) = min

8>>><>>>:
Ci,j−1[p− 1, q, r − 1]

Ri,j−1[p, q − 1, r] + 1

Ti,j−1[p− 1, q − 1, r − 1] + 1

X(ai, ap, bj−1, bq)[r]

X(−1,−1) = min

8>>><>>>:
Ci−1,j−1[p− 1, q, r − 1]

Ri−1,j−1[p, q − 1, r] + 1

Ti−1,j−1[p− 1, q − 1, r − 1] + 1

X(ai−1, ap, bj−1, bq)[r]

X(0,0) = min

8><>:
Ci,j [p− 1, q, r − 1]

Ri,j [p, q − 1, r] + 1

Ti,j [p− 1, q − 1, r − 1] + 1

X(ai, ap, bj , bq)[r] = min{X(−1,0), X(0,−1), X(−1,−1), X(0,0)}

Ci,j [p, q, r] = min{Ci,j [p− 1, q, r], X(ai, ap, bj , bq)[r]}
Ri,j [p, q, r] = min{Ri,j [p, q − 1, r], X(ai, ap, bj , bq)[r]}
Ti,j [p, q, r] = min{Ti,j [p− 1, q, r], Ti,j [p, q − 1, r], X(ai, ap, bj , bq)[r]}

return min
r,p,q

max{r,X(am, ap, bn, bq)[r]}

We are ready to present the dynamic programming algorithm. The initial
configurations correspond to cells in the large cell (a1, b1). For each initial config-
uration (a1, ap, b1, bq), we set X(a1, ap, b1, bq)[1] = 1.

Theorem 2. The minimization version of the chain pair simplification problem
under the discrete Fréchet distance (CPS-3F) can be solved in O(m2n2 min {m,n})
time.

We comment that this algorithm has been implemented with C++ and tested
with real datasets from the PDB. Compared with Algorithm FIND-CPS3F+, i.e.,
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the algorithm (mentioned in the introduction) for the optimization version of
CPS-3F+, proposed by Wylie and Zhu [11], the improvement is huge. Due to
space constraints, we leave the empirical results out and interested readers are
referred to the full version for the details.

5 Weighted Chain Pair Simplification

In this section, we consider a more general version of CPS-3F, namely, Weighted
CPS-3F. In the weighted version of the chain pair simplification problem, the
vertices of the chains A and B are assigned arbitrary weights, and, instead of
limiting the length of the simplifications, one limits their weights. That is, the
total weight of each simplification must not exceed a given value. The problem is
formally defined as follows.

Problem 2 (Weighted Chain Pair Simplification).
Instance: Given a pair of 3D chains A and B, with lengths m and n, respec-
tively, an integer k, three real numbers δ1, δ2, δ3 > 0, and a weight function
C : {a1, . . . , am, b1, . . . , bn} → R+.
Problem: Does there exist a pair of chains A′,B′ with C(A′), C(B′) ≤ k,
such that the vertices of A′,B′ are from A,B respectively, d1(A,A′) ≤ δ1,
d2(B,B′) ≤ δ2, and ddF (A′, B′) ≤ δ3?

When d1 = d2 = ddF , the problem is called WCPS-3F. When d1 = d2 = dH ,
the problem is NP-complete, since the non-weighted version (i.e., CPS-2H) is
already NP-complete [4].

We prove that WCPS-3F is weakly NP-complete via a reduction from the set
partition problem: Given a set of positive integers S = {s1, . . . , sn}, find two sets
P1, P2 ⊂ S such that P1 ∩ P2 = ∅, P1 ∪ P2 = S, and the sum of the numbers in
P1 equals the sum of the numbers in P2. This is a weakly NP-complete special
case of the classic subset-sum problem.

Our reduction builds two curves with weights reflecting the values in S.
We think of the two curves as the subsets of the partition of S. Although our
problem requires positive weights, we also allow zero weights in our reduction for
clarity. Later, we show how to remove these weights by slightly modifying the
construction.

Theorem 3. The weighted chain pair simplification problem under the discrete
Fréchet distance is weakly NP-complete.

Proof. Given the set of positive integers S = {s1, . . . , sn}, we construct two
curves A and B in the plane, each of length 2n. We denote the weight of a vertex
xi by w(xi). A is constructed as follows. The i’th odd vertex of A has weight si,
i.e. w(a2i−1) = si, and coordinates a2i−1 = (i, 1). The i’th even vertex of A has
coordinates a2i = (i+ 0.2, 1) and weight zero. Similarly, the i’th odd vertex of
B has weight zero and coordinates b2i−1 = (i, 0), and the i’th even vertex of B
has coordinates b2i = (i+ 0.2, 0) and weight si, i.e. w(b2i) = si. Figure 3 depicts
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Fig. 3: The reduction for the weighted chain pair simplification problem under the
discrete Fréchet distance.

the vertices a2i−1, a2i, a2(i+1)−1, a2(i+1) of A and b2i−1, b2i, b2(i+1)−1, b2(i+1) of B.
Finally, we set δ1 = δ2 = 0.2, δ3 = 1, and k = S, where S denotes the sum of
the elements of S (i.e., S =

∑n
j=1 sj).

We claim that S can be partitioned into two subsets, each of sum S/2, if and
only if A and B can be simplified with the constraints δ1 = δ2 = 0.2, δ3 = 1 and
k = S/2, i.e., C(A′), C(B′) ≤ S/2.

First, assume that S can be partitioned into sets SA and SB, such that∑
s∈SA

s =
∑
s∈SB

s = S/2. We construct simplifications of A and of B as
follows.

A′ = {a2i−1 | si ∈ SA}∪{a2i | si /∈ SA} and B′ = {b2i | si ∈ SB}∪{b2i−1 | si /∈ SB} .

It is easy to see that C(A′), C(B′) ≤ S/2. Also, since {SA, SB} is a partition of
S, exactly one of the following holds, for any 1 ≤ i ≤ n:

1. a2i−1 ∈ A′, b2i−1 ∈ B′ and a2i /∈ A′, b2i /∈ B′.
2. a2i−1 /∈ A′, b2i−1 /∈ B′ and a2i ∈ A′, b2i ∈ B′.

This implies that ddF (A,A′) ≤ 0.2 = δ1, ddF (B,B′) ≤ 0.2 = δ2 and ddF (A′, B′) ≤
1 = δ3.

Now, assume there exist simplifications A′, B′ of A,B, such that ddF (A,A′) ≤
δ1 = 0.2, ddF (B,B′) ≤ δ2 = 0.2, ddF (A′, B′) ≤ δ3 = 1, and C(A′), C(B′) ≤ k =
S/2. Since δ1 = δ2 = 0.2, for any 1 ≤ i ≤ n, the simplification A′ must contain
one of a2i−1, a2i, and the simplification B′ must contain one of b2i−1, b2i. Since
δ3 = 1, for any i, at least one of the following two conditions holds: a2i−1 ∈ A′
and b2i−1 ∈ B′ or a2i ∈ A′ and b2i ∈ B′. Therefore, for any i, either a2i−1 ∈ A or
b2i ∈ B, implying that si participates in either C(A′) or C(B′). However, since
C(A′), C(B′) ≤ S/2, si cannot participate in both C(A′) and C(B′). It follows
that C(A′) = C(B′) = S/2, and we get a partition of S into two sets, each of
sum S/2.

Finally, we note that WCPS-3F is in NP. For an instance I with chains A,B,
given simplifications A′, B′, we can verify in polynomial time that ddF (A,A′) ≤ δ1,
ddF (B,B′) ≤ δ2, ddF (A′, B′) ≤ δ3, and C(A′), C(B′) ≤ k. ut

Although our construction of A′ and B′ uses zero weights, a simple modifi-
cation enables us to prove that the problem is weakly NP-complete also when
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only positive integral weights are allowed. Increase all the weights by 1, that is,
w(a2i−1) = w(b2i) = si + 1 and w(a2i) = w(b2i−1) = 1, for 1 ≤ i ≤ n, and set
k = S/2 + n. It is easy to verify that our reduction still works. Finally, notice
that we could overlay the two curves choosing δ3 = 0 and prove that the problem
is still weakly NP-complete in one dimension.

6 Concluding Remarks

In this paper we showed that CPS-3F, which has been an open problem since
2008, is polynomially solvable. We also proved that the weighted version of the
problem is weakly NP-complete. In the full version, we include a summary of
empirical results that show that Algorithm 2 can handle real datasets, while the
O(m3n3) space requirement of Algorithm 1 causes memory overflow for most
pairs of protein backbones. Still, it would be interesting and desirable to further
reduce the running time of CPS-3F, as some cases take 20 hours to compute.
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with discrete Fréchet distance. J. Bioinformatics and Computational Biology,
6(1):51–64, 2008.

10. Tim Wylie, Jun Luo, and Binhai Zhu. A practical solution for aligning and
simplifying pairs of protein backbones under the discrete Fréchet distance. In Proc.
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