
CCCG 2019, Edmonton, Canada, August 8–10, 2019

Discrete Planar Map Matching

Bin Fu∗ Robert Schweller∗† Tim Wylie∗†

Abstract

Route reconstruction is an important application for
Geographic Information Systems (GIS) that rely heavily
upon GPS data and other location data from IoT de-
vices. Many of these techniques rely on geometric meth-
ods involving the Fréchet distance to compare curve sim-
ilarity. The goal of reconstruction, or map matching, is
to find the most similar path within a given graph to a
given input curve, which is often approximate location
data. This process can be approximated by sampling
the curves and using the discrete Fréchet distance. Due
to power and coverage constraints, the GPS data itself
may be sparse causing improper constraints along the
edges during the reconstruction if only the continuous
Fréchet distance is used. Here, we look at two varia-
tions of discrete map matching: one constraining the
walk length and the other limiting the number of ver-
tices visited in the graph. We give an efficient algorithm
to solve the question based on walk length showing it is
in P. We prove the other problem is NP-complete and
the minimization variant is APX-hard while also giving
a parameterized algorithm to solve the problem.

1 Introduction

There are many important applications related to GIS
systems due to the proliferation of GPS enabled devices
and the continued development of IoT devices. Route
reconstruction is the process of finding the most likely
path of an object based on the GPS data and the pos-
sible pathways. For instance, GPS data may indicate a
car was driving through buildings, and we want to fit
the data to the road network to recreate the most likely
path of the car.

Route reconstruction depends greatly on what met-
ric is used to determine how close the reconstructed
path is. The two main methodologies are those based
on geometric methods and Global Weight Optimiza-
tion. However, the methodologies can also be classi-
fied based on the problem definition where we have lo-
cal/incremental methods, global methods, and statisti-
cal methods. These can be extended to include topo-
logical and geological conditions, current weather and

∗Department of Computer Science, University of Texas - Rio
Grande Valley
†This author’s research was supported in part by National Sci-

ence Foundation Grant CCF-1817602.

traffic conditions, speed limits, and other variables that
can produce more optimal routes [17, 23]. Here, we fo-
cus on global geometric methods, and assume we have
all of the data as input to find an optimal solution.

One popular means of measuring this fit is the Fréchet
distance. Finding a path in a graph given a polygonal
curve is also referred to as map matching. Map match-
ing with respect to the Fréchet distance was first posed
by Alt et. al. [6] as follows: Let G = (V,E) be an undi-
rected connected planar graph with a given straight-line
embedding in R2 and a polygonal line P . Find a path
Q in G which minimizes the Fréchet distance between
P and Q. They give an efficient algorithm which runs
in O(pq log q) time and O(pq) space where p is the num-
ber of line segments of P and q is the complexity of G.
This allows for vertices and edges to be traversed multi-
ple times. Maheshwari et al. improved the running time
for the map matching problem for complete graphs [19].
The original algorithm decides it in O(pn2 log n), where
n is the number of vertices in the graph, and their new
algorithm solves it in O(pn2). We refer to this problem
(in a complete graph) as the set-chain matching prob-
lem, which was studied in more detail in [1, 2, 3, 25].

There has been work that yields better performance
with certain types of curves, with dual simplification for
an approximate result, with bounded simplification of
one of the chains, and in graphs with certain properties,
[8, 11, 12, 14]. With map matching, for the weak Fréchet
distance, the bounds have been lowered further to O(pq)
[13], and the problems can be defined with a smaller
error bound [24].

All this work has focused on the continuous Fréchet
distance, which assumes that every point along the
curve is meaningful. In reality, all GPS data is dis-
crete, and these approaches smooth the data. There
are some methods optimized for low-sampling-rate data
[17], but even these assume some maximum time be-
tween samples (less than five minutes). Our goal is to
analyze data where samples may be hours apart and can
not be reasonably smoothed. There are many instances
where you may not have GPS data, such as power con-
straints (low battery), or coverage issues (no towers),
or required disconnects (airline travel). In these cases,
you only connect to a cell tower or satellite intermit-
tently, and thus the resulting polygonal curve is only
meaningful at the nodes.

Another application where map matching algorithms
are useful are discretizations of any continuous data.

218

31st Canadian Conference on Computational Geometry, 2019

Examples include cartography applications, schematic
maps, or polygon simplification [7, 16, 21].

Our Results. We introduce two additional variants of
discrete map matching. We show that minimizing the
resulting path is polynomial. We then show that re-
stricting the set of vertices used from the graph is NP-
complete and the minimization variant is APX-hard.
We give a positive result based on a separator that yields
a polynomial time algorithm under more realistic input
assumptions (similar to those in [7]).

2 Preliminaries

The discrete Fréchet distance was originally defined by
Eiter and Mannila in 1994 [15], and was further ex-
panded on theoretically by Mosig et al. in 2005 [22].

Given two polygonal curves, we define the discrete
Fréchet distance as follows. We use d(a, b) to repre-
sent the Euclidean distance between two points a and
b, but it could be replaced with other distance measures
depending on the application.

Definition 1 The discrete Fréchet distance, dF , be-
tween two polygonal curves f : [0,m] → Rk and g :
[0, n]→ Rk is defined as:

dF (f, g) = min
σ:[1:m+n]→[0:m],
β:[1:m+n]→[0:n]

max
s∈[1:m+n]

{
d
(
f(σ(s)), g(β(s))

)}

where σ and β range over all discrete non-decreasing
onto mappings of the form σ : [1 : m+ n]→ [0 : m], β :
[1 : m+ n]→ [0 : n].

The continuous Fréchet distance is typically explained
as the relationship between a person and a dog con-
nected by a leash walking along the two curves and try-
ing to keep the leash as short as possible. However, for
the discrete case, we only consider the nodes of these
curves, and thus the man and dog must “hop” along
the nodes. Figure 1 shows this relationship between the
two and how with enough evenly sampled points on the
two curves, the resulting discrete Fréchet distance can
closely approximate the continuous Fréchet distances.

With a dynamic programming solution for finding
the discrete Fréchet distance between two polygonal
curves with m and n nodes, Eiter and Mannila proved
that O(mn) was possible [15]. Recently, a slightly sub-
quadratic algorithm was discovered by Agarwal et al.
showing the discrete Fréchet distance can be computed
in O(mn log logn

logn) time [4].

Bringmann and Mulzer [10] recently showed the there
is no strongly subquadratic algorithm for the discrete
Fréchet distance unless the strong exponential time hy-
pothesis (SETH) fails [9].

(a) (b)

Figure 1: Figures (a) and (b) show the relationship
between the discrete and continuous Fréchet distance
where p is the point on the line closest to a2 for the
continuous and the dotted line represents the closest
discrete distance from a2 (using only nodes). (a) the
curves have fewer nodes and a larger discrete Fréchet
distance, while (b) has the same paths with more nodes,
and thus provides a better approximation.

2.1 Discrete Map Matching

The definition of discrete map matching follows and we
discuss two variants that we consider in this work.

Definition 2 (Discrete Map Matching)
Instance: Given a simple connected planar graph G =
(V,E) embedded in R2, a polygonal curve P in Rd (d ≥
2), an integer K ∈ Z+, and an ε > 0.
Problem: Does there exist a walk Q in G with vertices
chosen from V ′ where V ′ ⊆ V , such that T ≤ K and
dF (P,Q) ≤ ε where T is defined as either

• T = |Q|, where the size of the chain is being re-
stricted, or

• T = |V ′|, where the number of vertices in the graph
is restricted (a vertex visited multiple times in the
walk only counts as one).

We look at the analogous variants of the set-chain
matching problems (rather than a graph they find a
path through a set of points) [1, 2, 3, 19, 25]: the Non-
unique map matching problem constrains either the
curve (NMMC-k) or the set of vertices used (NMMS-
k). There is a variant where the vertices in the walk
must also form a path, which is Unique map matching
(UMM-k), and was shown to be NP-complete simul-
taneously in [20, 26] with extended stronger results in
[16]. Note that when the vertices are unique the two
decision problems (|Q|,|V ′|) are equivalent. For refer-
ence, the naming convention is (U)nique/(N)on-unique
(M)ap (M)atching with a k (S)ubset/(C)hain.

3 Non-unique Map Matching With Restricted
Length (NMMC)

Here, we discuss discrete map matching concerned with
the length of the path through the graph. As the
NMMC problem restricts the length of Q, the problem
is similar to the set-chain variant (NSMC) [25] and has

219

CCCG 2019, Edmonton, Canada, August 8–10, 2019

a similar optimal substructure. The recurrence to find
the minimum size of Q (in number of vertices), is given
in Equation 1. The recurrence uses a 2D table M of size
|V | × |P | where the first column is initialized to one if
d(vk, p1) ≤ ε where 1 ≤ k ≤ |V |, and the values are set
to ∞ otherwise. N(v) stands for the neighborhood of
vertex v, which is the set of adjacent vertices in G.

The recurrence minimizes the number of vertices used
while going from p1 to p|P |. This is done by ensuring
that for each pi, 1 ≤ i ≤ |P |, we mark all vertices v
with d(v, pi) ≤ ε and that v is adjacent to at least one
vertex used in the walk so far, i.e., there is a v′ where
d(v′, pi−1) ≤ ε and there is an edge between v and v′.

M [i, j]=min





M [i, j-1], if d(vi, pj) ≤ ε,M [i, j-1] 6=∞
min

vk∈N(vi)
M [k, j-1]+1, if d(vi, pj) ≤ ε

∞, if d(vi, pj) > ε

(1)

This algorithm works for any graph with the worst
case being a complete graph, which is equivalent to the
discrete set-chain matching variant [25] and has com-
plexity O(|P |(|V | + |E|)). Each vertex v only looks at
its neighbor set, N(v), and since a planar graph has
fewer edges, the algorithm has a faster runtime. A pla-
nar graph has |E| = 3(|V |− 2) = O(|V |), yielding a run
time of O(|P ||V |) for planar graphs.

Theorem 1 The discrete Non-unique Map Matching
(NMMC) problem restricting the number of nodes in the
output polygonal curve Q (vertices in the walk) can be
solved in O(|P |(|V |+ |E|)) time for general graphs, and
O(|P ||V |) time for planar graphs.

The optimal walk can be extracted by a simple back-
tracking algorithm. Find the minimum value in the last
column, and the index of that row is the last vertex of
the walk. Then, continually look at the previous column
and find either the same row (same value), or look at
all neighbors of that vertex and find a row with a value
that is one less than the current value.

4 Discrete Non-unique Map Matching with Re-
stricted Set (NMMS)

Discrete map matching concerned with restricting the
number of vertices of the graph that the walk uses is
an interesting problem related to coverage. Imagine a
route reconstruction problem looking at cellphone tower
coverage. If we wanted to know whether it was possible
that the driver connected to fewer than k towers, this is
equivalent to NMMS. On a complete graph, this is the
same as discrete unit disk cover [25], and thus NMMS is
asking a DUDC question related to planar connectivity

(a) Vertex Gadget (b) Connecting Edge

Figure 2: (a) The vertex gadget replaces a vertex with 4
vertices and three connecting locations. (b) Edge Con-
necting two vertex gadgets. Note that there is no re-
striction requiring the edges to be straight, just that
the distance bounds are maintained.

between the disks. Section 4.1 shows NMMS is NP-
complete, and Section 4.2 shows the minimization vari-
ant is APX-hard. We give a polynomial result related
to real-world application constraints in Section 4.3.

4.1 Reduction Overview

NMMS on a complete graph is equivalent to Non-Unique
Set Matching with a fixed set for some k (NSMS), which
is NP-complete [25]. On a planar graph the problem is
different since our walk through the graph is limited by
its neighbors and the planarity of the graph. We show
that the problem is NP-complete via a reduction from
Planar Vertex Cover with max degree three (PVC3),
which was shown to be NP-complete in [18] and shown
to be APX-hard in [5]. For Planar Vertex Cover we are
given a planar graph G = (V,E) and an integer Kvc as
input. For this special case we know that deg(v) ≤ 3 ∀
v ∈ V . We want to know if there is a vertex cover of G
of size at most Kvc.

We use several gadgets to transform an instance of
PVC3 into an instance of NMMS. Since we are moving
from a graph to a geometry problem, we use a planar
embedding of the graph. Let Gs be a planar embedding
of the graph G where each edge has length greater than
5ε. This ensures our geometric gadgets work correctly
for any given ε > 0.

The reduction is going to make a new graph and a
polygonal curve that will visit each edge of G exactly
twice by creating a doubly-connected edge list (Section
4.1.2). The gadgets that replace each vertex and edge
of G (Section 4.1.1) ensure that this walk is possible.

4.1.1 Gadgets

Each vertex in Gs is replaced with the vertex gadget
shown in Figure 2a, which consists of four vertices and
three edges connecting them. The edge lengths are ex-
actly ε in length. The central vertex represents the orig-
inal vertex while the other three will be used to connect
edges. We replace each edge by three additional vertices
and six edges that connect two vertex gadgets (Figure

220

31st Canadian Conference on Computational Geometry, 2019

(a) Edge Gadget (b) Edge-Cross Gadget

Figure 3: (a) An edge gadget includes the two connected
vertex gadgets and the connecting edges between them,
and then also has a piece of the polygonal curve. The
circles represent an ε-ball around each node of the curve
to show which vertices in the graph are within ε. It
begins on one “side” of the edge and ends on the other
“side.” (b) The edge-cross gadget is an edge gadget that
has the polygonal curve ending on the same side of the
edge gadget that it began.

(a) Walk through vi (b) Walk through vj

Figure 4: The two possible walks through an edge gad-
get connecting vertices vi and vj . (a) A walk through
the edge gadget that uses the center vertex of vi. (b)
A walk through the edge gadget that uses the center
vertex of vj .

2b). Note that the new edges can be arbitrarily placed
in the plane as necessary as long as the relationship be-
tween the three center vertices is maintained. Since we
know the max degree of any vertex in Gs is three, we can
connect up to three edge gadgets to each vertex gadget.
We now have a new graph G′s = (V ′, E′) with exactly
|V ′| = 4|V |+ 3|E|, and |E′| = 3|V |+ 6|E|.

For the full edge gadget, we add a polygonal curve to
each edge, as shown in Figure 3a. We discuss connect-
ing these into one curve later; for now we focus on a
single edge. If we walk through the graph following the
polygonal curve, and minimize the number of vertices
used, then there are only two possible walks. Assume
we begin at the lower left edge vertex (on the variable
gadget). We must either follow the walk shown in Fig-
ure 4a or the one in 4b. Both walks use only 7 vertices,
and this is minimal for any edge gadget. This means
we must use the center vertex representing vi or vj for
every edge eij . We could use both, but we only have to
use one, and either will work. In this way, we have a
vertex “covering” that edge. The same vertex could be
used for all three edge gadgets.

The edge gadget ends the walk on the opposite side of
the edge from where it started, which can be a problem
(explained later). Thus, we finish the edge gadget with a

(a) Walk through vi

(b) Walk through vj

Figure 5: The two possible walks through an edge-
cross gadget connecting vertices vi and vj . (a) A walk
through the edge-cross gadget that uses the center ver-
tex of vi. (b) A walk through the edge-cross gadget that
uses the center vertex of vj .

crossover that allows the walk to cross back to the other
side of the edge. Figure 3b shows this construction.
Figures 5a and 5b show the two possible walks through
the edge. Thus, every edge gadget needs a minimum of
8 vertices for a walk following the curve.

4.1.2 Connecting Gadgets

To connect all of the small polygonal curves into a sin-
gle curve, we need a walk that traverses every edge in
our original graph at least once, and it may traverse an
edge multiple times. The edge-traversal algorithm (Al-
gorithm 1) ensures we go through every edge exactly
twice (an example is shown in Figure 6). This gener-
ates a doubly connected edge-list (DCEL).

Algorithm 1 (Generate DCEL)
Input: Graph G = (V,E)
Output: Sequence of edges

• Compute a minimum spanning tree M of G and
pick a vertex v.

• Create a path P around M by visiting each edge
twice with the path in a counter-clockwise manner.

• At each vertex vi ∈ P , add any edge e{vi,vj} twice
to the edge sequence if it is not part of P .

221

CCCG 2019, Edmonton, Canada, August 8–10, 2019

(a) Example graph
(b) Spanning tree and
traversal

(c) Final edge traversal

Figure 6: (a) An example planar graph with max vertex
degree three. (b) A random MST with a traversal going
through all vertices and going through all edges of the
MST twice. (c) Adding in all other edges by following
the path and inserting the missing edges into the path
at each vertex.

(a) Right Turn (b) Left Turn

Figure 7: Assuming we are coming from the left-
most vertex gadget. (a) Two edge-cross gadgets con-
nected by a vertex gadget turning right. (b) Two edge-
cross gadgets connect its left and thus making a left
turn. After we cross the first edge, we must cross
back to the other side in order to turn left, so those
three nodes in the curve are repeated in reverse order:
〈p1, . . . , pi, pi+1, . . . , pi+6, . . . pF 〉 s.t. the locations of pi
and pi+6, pi+1 and pi+5, and pi+2 and pi+4 are the same.

With this walk, connect the polygonal curve segments
and adjust each segment whenever we cross the same
edge twice (the number of times we will visit the same
edge) or we need to cross to the other side of an edge
(to finish on the opposite side). With the crossovers,
Figure 7 shows how to make right and left turns.

4.1.3 Complexity

The new graph has |V ′| = 4|V |+ 3|E|, and the number
of edges |E′| = 3|V |+ 6|E| with an optimal walk using
K = 7|E| − |d2| − 3|d3| + Kvc where di = {vj |vj ∈
V, deg(vj) = i}, i.e., di is the set of all vertices from V
with degree i. Since adjacent edges on the vertex gadget
share vertices, we must subtract these for vertices of
degree 2 and 3 in the original graph.

Theorem 2 Discrete non-unique map matching with
T = |V ′| (NMMS) is NP-complete.

Proof. The graph G has a vertex cover of size Kvc if
and only if there exists a walk Q in G′s with P such that
Q only passes through K = 7|E| − |d2| − 3|d3| + Kvc

vertices and dF (P,Q) ≤ ε.
Given the graph G, the given construction allows a

walk to pass through an edge gadget with a minumum
of 7 vertices. Since six of these must be used for every
edge giving 7|E|−|d2|−3|d3| vertices, the crossing vertex
comes from one of the two vertex gadgets, but either
can be used. Thus, every edge must have one of the
two center vertex gadget vertices, which can be used for
the adjacent edges as well. Thus, it is a vertex cover
equivalent meaning Kvc vertices are sufficient.

Given an instance of G′s and P . A walk must pass
through 7|E|−|d2|−3|d3| vertices. The additional vertex
needed for each edge-cross gadget constitutes a single
vertex associated with an adjacent edge in G. Thus, it
would be a vertex cover.

For membership in NP, if given a set V ′ of vertices,
take the induced subgraph of G of the vertices from V ′

and let it be G′. The problem then becomes equivalent
to NMMC over G′ with k = |P |, which is polynomial.
Finally, we check the discrete Fréchet distance in poly-
nomial time. �

4.2 APX-hardness

Here we show that the minimization variant of the prob-
lem is APX-hard with an L-reduction from PVC3. An
L-reduction is an approximation-preserving reduction
when both problems are minimization problems.

Definition 3 (L-reduction) Let A and B be opti-
mization problems and cA and cB their respective cost
functions. A pair of functions f and g is an L-reduction
if all of the following conditions are met:

• f and g are computable in polynomial time,

• if x is an instance of problem A, then f(x) is an
instance of problem B,

• if y′ is a solution to f(x), then g(y′) is to x,

• there exists a positive constant α such that
OPTB(f(x)) ≤ αOPTA(x),

• there exists a positive constant β such that for every
solution y′ to f(x),
|OPTA(x)− cA(g(y′))| ≤ β|OPTB(f(x))− cB(y′)|.

Theorem 3 Minumum discrete non-unique map
matching with T = |V ′| (Min NMMS) is APX-hard.

Proof. We show this via an L-reduction. Let f be the
L-reduction from PVC3 to NMMS using the described
construction above. For every vertex cover Vc of size

222

31st Canadian Conference on Computational Geometry, 2019

Kvc of graph G = (V,E) for PVC3, there is a vertex
walk Q in our new graph G′s = (V ′, E′) using K ′ =
7|E|−|d2|−3|d3|+Kvc vertices such that dF (P,Q) ≤ ε.

We construct our walk Q as a sequence of vertices
from G′s. Let {Q} denote the vertices in the walk, i.e.,
|{Q}| = K ′. Then for every vertex cover Vc ⊂ V of G
we construct the walk Q with {Q} ⊂ V ′ of G′s = f(G)
of size K ′. Since G has bounded degree 3, it is clear that
3Kvc ≥

∑
v∈Vvc

deg(v) ≥ |E| ≥ |V |. We can see that
K ′ = 7|E| − |d2| − 3|d3| + Kvc ≤ 7|E| + Kvc ≤ 22Kvc.
We can replace |E| with 3Kvc. Thus, the first property
of an L-reduction is satisfied with α = 22. K ′ ≤ 22Kvc.

Conversely, given a walk Q with {Q} ⊂ V ′ of G′s =
f(G) of size K ′, we transform it back into a vertex cover
Vvc ⊂ V of size Kvc of graph G as follows. We look
at each variable gadget (any subgraph with one vertex
with exactly 3 adjacent vertices of distance ε in the em-
bedding as shown in Figure 2a). For every one of these
central vertices, if the vertex is included in the walk Q,
then we include it in Vvc. Observe this will give a vertex
cover for G since the walk must include either vi or vj
from the two variable gadgets on either side of an edge
gadget. Note that Kvc ≤ K ′−7|E|+ |d2|+3|d3|. Given
any walk in the graph requires all the vertices except
those that would be part of a vertex cover, we get that
f is an L-reduction with β = 1. �

4.3 Positive Result Based on a Separator

Here, we develop an FPT algorithm for the NMMS
problem based on a divide and conquer approach with
a graph separator, which is a set of vertices that, if re-
moved, disconnect the graph. Let balld(p, ε) be the ball
in Rd with center p ∈ Rd and radius ε.1

Definition 4 ((ε, c)-local property) A polygonal
curve P = 〈p1, p2, . . . , pn〉 on a plane satisfies the
(ε, c)-local property if for every pi, the circle with
center at pi and radius ε does not contain any pj with
|i− j| > c.

Definition 5 ((ε, c, u)-local property) An input
polygonal curve P = 〈p1, p2, . . . , pn〉 and planar graph
G = (V,E) satisfy the (ε, c, u)-local property if

1. The curve P satisfies the (ε, c)-local property, and

2. For every point p ∈ Rd, the ball with center at p
and radius ε contains at most u points in V .

Theorem 4 Assume that c and u are integer param-
eters. There is a O(n1+u log c) time algorithm for
the Discrete Map Matching with restricted set prob-
lem (NMMS) when the input P = 〈p1, p2, . . . , pn〉 and
G = (V,E) satisfy the (ε, c, u)-local property.

1Given we are looking at planar embeddings, if we restrict the
polygonal curve to be in R2, it is equivalent to look at the circle
with radius ε centered at p ∈ R2.

Proof. Consider the case that the input is a polygonal
curve satisfying the (ε, c)-local property, and an arbi-
trary graph. Let S = {pbn2 c+i : i ∈ [0, c− 1]}.

By brute force, iterate over all possible matchings be-
tween the c points in S, and at most u possible points
in V ∩ ball(pi, ε). The number of possible matchings
between the points in S and the points in V is at
most cu. For each such matching, we recurse on the
two separated portions of P induced by the respective
separator. This yields a divide and conquer algorithm
that has time complexity T (n) = 2cuT (n2). Solving
this recurrence equations yields a time complexity of
O(n(cu logn)) = O(n1+u log c). �

Corollary 1 Assume that c and ε are fixed. Then there
is a polynomial time algorithm if input P is a polygonal
curve satisfying the (ε, c)-local property, and input G is
a grid graph on the plane.

Proof. Suppose the input graph is a grid graph and ε
is fixed. Each vertex vi in the curve P can only select
at most u = π(ε+

√
2/2)2 grid points with distance ε to

match. The result follows from Theorem 4. �

5 Conclusion and Future Work

In this work we introduce variants of discrete map
matching and show that given different constraints the
problem is tractable or APX-hard. When the length
of the walk is restricted, we show the problem is decid-
able in O(|P ||V |) time. For the variant restricting the
number of vertices usable in the graph, after proving it
is APX-hard, we give an FPT algorithm based on the
structure of P and its relationship to the graph. Given
the application of route reconstruction, this is a rea-
sonable practical constraint. Our work leads to many
open questions such as FPT algorithms based on differ-
ent parameters of the input curve or graph beyond ours,
and possible approximation algorithms. Is there a good
constant factor approximation for minimum NMMS?

Another direction of research is to extend and gener-
alize discrete map matching. Our problem definitions
ignore all nodes in the graph outside the reach of the
polygonal curve. To fully realize route reconstruction
on large graphs, the problem should only ensure that at
least one node is visited within the range of each node
of the curve, but also accounts for and attempts to min-
imize paths through vertices that are not in range. This
is similar to TSP with neighborhoods, except that the
order of the neighborhoods is given. This is also similar
to Group Steiner Tree and facility location problems.

Finally, what are the problem complexities under the
continuous Fréchet distance, and are there better ap-
proximations or algorithms?

223

CCCG 2019, Edmonton, Canada, August 8–10, 2019

References

[1] P. Accisano and A. Üngör. Hardness results on
curve/point set matching with fréchet distance. CoRR,
abs/1211.2030, 2012.

[2] P. Accisano and A. Üngör. Approximate match-
ing of curves to point sets. In Proceedings of the
26th Canadian Conference on Computational Geome-
try, CCCG’14, 2014.

[3] P. Accisano and A. Üngör. Finding a curve in a point
set. CoRR, abs/1405.0762, 2014.

[4] P. K. Agarwal, R. B. Avraham, H. Kaplan, and
M. Sharir. Computing the discrete fréchet distance in
subquadratic time. SIAM J. Comput., 43(2):429–449,
2014.

[5] P. Alimonti and V. Kann. Some apx-completeness re-
sults for cubic graphs. Theoretical Computer Science,
237(1):123 – 134, 2000.

[6] H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching pla-
nar maps. Journal of Algorithms, 49(2):262–283, Nov
2003.

[7] Q. W. Bouts, I. I. Kostitsyna, M. van Kreveld,
W. Meulemans, W. Sonke, and K. Verbeek. Mapping
Polygons to the Grid with Small Hausdorff and Fréchet
Distance. In Proceedings of the 24th Annual European
Symposium on Algorithms, volume 57 of ESA 2016,
pages 22:1–22:16, 2016.

[8] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On
map-matching vehicle tracking data. In Proc. of the
31st Int. Conf. on Very Large Data Bases, VLDB’05,
pages 853–864. VLDB Endowment, 2005.

[9] K. Bringmann. Why walking the dog takes time:
Frechet distance has no strongly subquadratic algo-
rithms unless SETH fails. In 55th IEEE Annual Sym-
posium on Foundations of Computer Science, FOCS,
pages 661–670, 2014.

[10] K. Bringmann and W. Mulzer. Approximability of the
discrete fréchet distance. JoCG, 7(2):46–76, 2016.

[11] K. Buchin, M. Buchin, and Y. Wang. Exact algorithms
for partial curve matching via the Fréchet distance. In
Proc. of the 20th Annual ACM-SIAM Sym. on Discrete
Algorithms, SODA’09, pages 645–654, 2009.

[12] D. Chen, A. Driemel, L. J. Guibas, A. Nguyen, and
C. Wenk. Approximate map matching with respect to
the Fréchet distance. In Proc. of the 13th Workshop on
Algorithm Engineering and Experiments, ALENEX’11,
pages 75–83. SIAM, 2011.

[13] D. Chen, L. J. Guibas, Q. Huang, and J. Sun. A faster
algorithm for matching planar maps under the weak
Fréchet distance. Unpublished, December 2008.

[14] A. Driemel, S. Har-Peled, and C. Wenk. Approximating
the Fréchet distance for realistic curves in near linear
time. Discrete & Comp. Geom., 48(1):94–127, 2012.

[15] T. Eiter and H. Mannila. Computing discrete Fréchet
distance. Technical Report CD-TR 94/64, Information
Systems Dept., Technical University of Vienna, 1994.

[16] M. Löffler and W. Meulemans. Discretized approaches
to schematization. In Proceedings of the 29th Canadian
Conference on Computational Geometry, CCCG’17,
pages 220–225, 2017.

[17] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and
Y. Huang. Map-matching for low-sampling-rate gps tra-
jectories. In Proc. of the 17th ACM SIGSPATIAL Int.
Conf. on Advances in G.I.S., GIS’09, pages 352–361,
New York, NY, 2009. ACM.

[18] D. S. J. M. R. Garey. The rectilinear steiner tree prob-
lem is np-complete. SIAM Journal on Applied Mathe-
matics, 32(4):826–834, 1977.

[19] A. Maheshwari, J.-R. Sack, K. Shahbaz, and H. Zarrabi-
Zadeh. Staying close to a curve. In Proc. of the 23rd
Annual Canadian Conf. on Computational Geometry,
CCCG’11, 2011. August 10-12, 2011.

[20] W. Meulemans. Map matching with simplicity con-
straints. CoRR, abs/1306.2827, 2013.

[21] W. Meulemans. Discretized approaches to schematiza-
tion. CoRR, abs/1606.06488, 2016.

[22] A. Mosig and M. Clausen. Approximately matching
polygonal curves with respect to the Fréchet distance.
Comp. Geom.: Theory and Appl., 30(2):113–127, Feb
2005.

[23] H. Wei, Y. Wang, G. Forman, and Y. Zhu. Map match-
ing by Fréchet distance and global weight optimiza-
tion. Technical Report SJTU CS TR 201302001, De-
partment of Computer Science, Shanghai Jiao Tong
University, 2013.

[24] C. Wenk, R. Salas, and D. Pfoser. Addressing the
need for map-matching speed: Localizing global curve-
matching algorithms. In 18th Int. Conf. on Scien-
tific and Statistical Database Management, SSDBM’06,
pages 379–388, 2006.

[25] T. Wylie and B. Zhu. Following a curve with the dis-
crete Fréchet distance. Theoretical Computer Science,
556:34–44, oct 2014.

[26] T. Wylie and B. Zhu. Intermittent map matching with
the discrete Fréchet distance. CoRR, abs/1409.2456:1–
21, 2014.

224

