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Abstract. Efficient data indexing and nearest neighbor retrieval are
challenging tasks in high-dimensional spaces. This work builds upon our
previous analyses of iDistance partitioning strategies to develop the back-
bone of a new indexing method using a heuristic-guided hybrid index
that further segments congested areas of the dataspace to improve over-
all performance for exact k-nearest neighbor (kNN) queries. We develop
data-driven heuristics to intelligently guide the segmentation of distance-
based partitions into spatially disjoint sections that can be quickly and
efficiently pruned during retrieval. Extensive tests are performed on k-
means derived partitions over datasets of varying dimensionality, size,
and cluster compactness. Experiments on both real and synthetic high-
dimensional data show that our new index performs significantly better
on clustered data than the state-of-the-art iDistance indexing method.
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1 Introduction

Modern database-oriented applications are overflowing with rich information
composed of an ever-increasing amount of high-dimensional data. While massive
data storage is becoming routine, efficiently indexing and retrieving it is still a
practical concern. A frequent and costly retrieval task on these databases is k-
nearest neighbor (kNN) search, which returns the k most similar records to any
given query record. While a database management system (DBMS) is highly
optimized for a few dimensions, most traditional indexing algorithms (e.g., the
B-tree and R-tree families) degrade quickly as the number of dimensions increase,
and eventually a sequential (linear) scan of every single record in the database
becomes the fastest retrieval method.

Many algorithms have been proposed in the past with limited success for true
high-dimensional indexing, and this general problem is commonly referred to as
the curse of dimensionality [4]. These issues are often mitigated by applying di-
mensionality reduction techniques before using popular multi-dimensional index-
ing methods, and sometimes even by adding application logic to combine multiple
independent indexes and/or requiring user involvement during search. However,
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modern applications are increasingly employing highly-dimensional techniques
to effectively represent massive data, such as the highly popular 128-dimensional
SIFT features [11] in Content-Based Image Retrieval (CBIR). Therefore, it is of
great importance to be able to comprehensively index all dimensions for a unified
similarity-based retrieval model.

This work builds upon our previous analyses of standard iDistance partition-
ing strategies [14, 19], with the continued goal of increasing overall performance
of indexing and retrieval for kNN queries in high-dimensional dataspaces. We as-
sess performance efficiency by the total and accessed number of B+-tree nodes,
number of candidate data points returned from filtering, and the time taken to
build the index and perform queries. In combination, these metrics provide a
highly descriptive and unbiased quantitative benchmark for independent com-
parative evaluations. We compare results against our open-source implementa-
tion of the original iDistance algorithm1.

The rest of the paper is organized as follows. Section 2 highlights background
and related work, while Section 3 covers the basics of iDistance and then intro-
duces our hybrid index and heuristics for iDStar. Section 4 presents experiments
and results, followed by a brief discussion of key findings in Section 5. We close
with our conclusions and future work in Section 6.

2 Related Work

The ability to efficiently index and retrieve data has become a silent backbone of
modern society, and it defines the capabilities and limitations of practical data
usage. While the one-dimensional B+-tree [2] is foundational to the modern re-
lational DBMS, most real-life data has many dimensions (attributes) that would
be better indexed together than individually. Mathematics has long-studied the
partitioning of multi-dimensional metric spaces, most notably Voronoi Diagrams
and the related Delaunay triangulations [1], but these theoretical solutions can
often be too complex for practical application. To address this issue, many ap-
proximate techniques have been proposed to be used in practice. One of the most
popular is the R-tree [7], which was developed with minimum bounding rectan-
gles (MBRs) to build a hierarchical tree of successively smaller MBRs containing
objects in a multi-dimensional space. The R∗-tree [3] enhanced search efficiency
by minimizing MBR overlap. However, these trees (and most derivations) quickly
degrade in performance as the dimensions increase [5, 12].

Research has more recently focused on creating indexing methods that define
a one-way lossy mapping function from a multi-dimensional space to a one-
dimensional space that can then be indexed efficiently in a standard B+-tree.
These lossy mappings require a filter-and-refine strategy to produce exact query
results, where the one-dimensional index is used to quickly retrieve a subset of the
data points as candidates (the filter step), and then each of these candidates is
verified to be within the specified query region in the original multi-dimensional
space (the refine step). Since checking the candidates in the actual dataspace is

1 Publicly available at: http://code.google.com/p/idistance/
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costly, the goal of the filter step is to return as few candidates as possible while
retaining the exact results to satisfy the query.

The Pyramid Technique [5, 22] was one of the first prominent methods to
effectively use this strategy by dividing up the d-dimensional space into 2d pyra-
mids with the apexes meeting in the center of the dataspace. For greater simplic-
ity and flexibility, iMinMax(θ) [12, 16] was developed with a global partitioning
line θ that can be moved based on the data distribution to create more balanced
partitions leading to more efficient retrieval. Both the Pyramid Technique and
iMinMax(θ) were designed for multi-dimensional range queries, and extending
to high-dimensional kNN queries is not a trivial task.

First published in 2001, iDistance [10, 20] specifically addressed exact kNN
queries in high-dimensional spaces and was proven to be one of the most efficient,
state-of-the-art techniques available. In recent years, iDistance has been used in
a number of demanding applications, including large-scale image retrieval [21],
video indexing [15], mobile computing [8], peer-to-peer systems [6], and video
surveillance retrieval [13]. As information retrieval from high-dimensional and
large-scale databases becomes more ubiquitous, the motivations for this research
will only increase. Many recent works have shifted focus to approximate nearest
neighbors [9, 18] which can generally be retrieved faster, but these are outside
the scope of efficient exact kNN retrieval presented in this paper.

3 Towards iDStar

Our hybrid index and accompanying heuristics build off the initial concept of
iDistance with an approximate Voronoi tessellation of the space using hyper-
spheres. Therefore we start with a brief overview of the original iDistance algo-
rithm before introducing iDStar.

3.1 iDistance

The basic concept of iDistance is to segment the dataspace into disjoint spherical
partitions, where all points in a partition are indexed by their distance (hence
“iDistance”) to the reference point of that partition. This results in a set of
one-dimensional distance values, each related to one or more data points, for
each partition, that are all indexed in a single standard B+-tree. The algorithm
was motivated by the ability to use arbitrary reference points to determine the
(dis)similarity between any two data points in a metric space, allowing single
dimensional ranking and indexing of data points regardless of the dimensionality
of the original space [10, 20].

Building the Index Here we focus only on data-based partitioning strategies,
which adjusts the size and location of partitions in the dataspace based on the
underlying data distribution, which greatly increases retrieval performance in
real-world settings [10, 14, 20]. For all partitioning strategies, data points are
assigned to the single closest partition based on Euclidean distance to each par-
titions’ representative reference point.
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Fig. 1: (a) A query sphere q with radius r and the searched regions (shaded) in the
two overlapping partitions Pi and Pj defined by their reference points Oi and Oj , and
radii distmaxi and distmaxj , respectively. (b) An example two dimensional dataset
with three cluster-based partitions and their point assignments and radii.

Formally, we have a set of partitions P = 〈P1, . . . , PM 〉 with respective refer-
ence points O = 〈O1, . . . , OM 〉. We will let the number of points in a partition
be denoted |Pi| and the total number of points in the dataset be N . After the
partitions are defined, a mapping scheme is applied to create separation in the
underlying B+-tree between each partition, ensuring that any given index value
represents a unique distance for exactly one partition.

Given a partition Pi with reference point Oi, the index value yp for a point
p assigned to this partition is defined by Equation 1, where dist() is any metric
distance function, i is the partition index, and c is a constant multiplier for
creating the partition separation. While constructing the index, each partition
Pi records the distance of its farthest point as distmaxi. We can safely set
c = 2

√
d, which is twice the maximum possible distance of two points in the

d-dimensional unit space of the data, and therefore no index value in partition
Pi will clash with values in any other partition Pj 6=i.

yp = i× c+ dist(Oi, p) (1)

Querying the Index The index should be built in such a way that the filter
step returns the fewest possible candidate points without missing the true k-
nearest neighbors. Fewer candidates reduces the costly refinement step which
must verify the true multi-dimensional distance of each candidate from the query
point. Performing a query q with radius r consists of three steps: 1) determine
the set of partitions to search, 2) calculate the search range for each partition,
and 3) retrieve the candidate points and refine by their true distances.

Figure 1(a) shows an example query sphere contained completely within par-
tition Pi and intersecting partition Pj , as well as the shaded ranges of each parti-
tion that need to be searched. For each partition Pi and its distmaxi, the query
sphere overlaps the partition if the distance from the edge of the query sphere



5

to the reference point Oi is less than distmaxi, as defined in Equation 2. There
are two possible cases of overlap: 1) q resides within Pi, or 2) q is outside of Pi,
but the query sphere still intersects it. In the first case, the partition needs to be
searched both inward and outward from the query point over the range (q ± r),
whereas in the second case, a partition only needs to be searched inward from
the edge (distmaxi) to the farthest point of intersection. For additional details,
we refer the reader to the original works [10, 20].

dist(Oi, q)− r ≤ distmaxi (2)

3.2 iDStar

Our previous work showed that iDistance stabilizes in performance by accessing
an entire partition (k-means cluster) to satisfy a given query, despite dataset
size and dimensionality [14]. While only accessing a single partition is already
significantly more efficient than sequential scan, this hurdle was the main motiva-
tion to explore further dataspace segmentation to enhance retrieval performance.
We achieve this additional segmentation with the creation of intuitive heuristics
applied to a novel hybrid index. These extensions are similar to the works of
the iMinMax(θ) [12] and recently published SIMP [17] algorithms, whereby we
can incorporate additional dataspace knowledge at the price of added algorithm
complexity and performance overhead. This work proves the feasibility of our
approaches and lays the foundations for a new indexing algorithm, which we
introduce here as iDStar.

Essentially, we aim to further separate dense areas of the dataspace by split-
ting partitions into disjoint sections corresponding to separate segments of the
B+-tree that can be selectively pruned during retrieval. The previous sentence
denotes the technical vocabulary we will use to describe the segmentation pro-
cess. In other words, we apply a given number of dimensional splits in the datas-
pace which sections the partitions into B+-tree segments.

We develop two types of segmentation based on the scope of splits: 1) Global,
which splits the entire dataspace (and consequently any intersecting partitions),
and 2) Local, which explicitly splits the dataspace of each partition separately.
While different concepts, the general indexing and retrieval algorithm modifi-
cations and underlying affects on the B+-tree are similar. First, the mapping
function is updated to create a constant segment separation within the already
separated partitions. Equation 3 describes the new index with the inclusion of
the sectional index j, and s as the total number of splits applied to the parti-
tion. Note that a partition is divided into 2s sections, so we must appropriately
bound the number of splits applied. Second, after identifying the partitions to
search, we must identify the sections within each partition to actually search,
as well as their updated search ranges within the B+-tree. This also requires
the overhead of section-supporting data structures in addition to the existing
partition-supporting data structures.

yp = i× c+ j × c

2s
+ dist(Oi, p) (3)
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Fig. 2: (a) Conceptual global splits Sx and Sy and their effect on query search ranges.
(b) The histogram-based splits applied by the G2 heuristic on the example dataset.

Global The global segmentation technique is inspired by the Pyramid and
iMinMax(θ) methods, whereby we adjust the underlying index based on the
data distributions in the space. A global split is defined by a tuple of dimension
and value, where the given dimension is split on the specified value. There can
be only one split in each dimension, so given the total number of splits s, each
partition may have up to 2s sections. Because the splits occur across the entire
dataspace, they may intersect (and thereby segment) any number of partitions
(including zero). An added benefit of global splits is the global determination of
which sections require searching, since all partitions have the same global z-curve
ordering. We introduce three heuristics to optimally choose global splits.

• (G1) Calculate the median of each dimension as the proposed split value
and rank the top s dimensions to split in order of split values nearest to 0.5,
favoring an even 50/50 dataspace split.

• (G2) Calculate an equal-width histogram in each dimension, selecting the
center of the highest frequency bin as the proposed split value, and again
ranking dimensions to split by values nearest to the dataspace center.

• (G3) Calculate an equal-width histogram in each dimension, selecting the
center of the bin that intersects the most partitions, ranking the dimensions
first by number of partitions intersected and then by their proximity to
dataspace center.

Figure 2(a) shows our iDistance example with a split in each dimension
(Sy, Sx). We can see that a given split may create empty partition sections,
or may not split a partition at all. We explicitly initialize these data structures
with a known value representing an “empty” flag. Therefore, we only check for
query overlap on non-empty partitions and non-empty sections. For the example
dataset and partitions in Figure 1(b), the G2 heuristic applies the splits shown
in Figure 2(b).
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Fig. 3: (a) Conceptual local splits Sx
i , Sy

i , and Sx
j and their effect on query search

ranges in overlapping partitions and sections. (b) The local population-based splits
applied to each partition by the L3 heuristic on the example dataset.

Local We developed the local technique as a purposeful partition-specific seg-
mentation method based only on local information of the given partition rather
than the global data characteristics of the entire space. Local splits are defined
by a tuple of partition and dimension, where the given partition is split in the
specified dimension. Unlike the global technique, we do not need the values of
each dimensional split because all splits are made directly on the partition ref-
erence point location. Figure 3(a) shows a conceptual example of local splits.

During index creation we maintain a distmaxi of each partition Pi, and we
now we do this for sections too (distmaxji for partition Pi and section j). This
allows the addition of a section-based query overlap filter which can often prune
away entire partitions that would have otherwise been searched. This can be
seen in Figure 3(a), where the original partition distmax is now a dotted line
and a new distmax is shown for each individual partition section.

We introduce three heuristics to choose local splits. Within each partition, we
want to split the data as evenly as possible using the added spatial information.
Thus, for all three methods, we rank the dimensions to split by those closest
to an equal (50/50) population split. We denote s as the maximum number of
splits any partition can have.

• (L1) Uniformly apply s splits to each partition using the top ranked.
• (L2) Use a population threshold as a cutoff criteria, so each partition could

have up to s splits. The intuition here is that if a split only segments a
reasonably small portion of the data, it probably is not worth the additional
overhead to keep track of it.
• (L3) Use s to calculate the maximum number of underlying B+-tree seg-

ments created by method L1, but then redistribute them based on partition
population. This automatically applies additional splits to dense areas of the
dataspace while removing splits where they are not needed and maintain an
upper bound on B+-tree segments.
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Formally, we have a set of splits S = 〈S1 . . . , SM 〉 where Si represents the set
of dimensions to split on for partition Pi. Given a maximum granularity for the
leaves in the B+-tree, we can calculate how many splits each partition should
have as a percentage of its population to the total dataset size. Equation 4 gives
this assignment used by L3. For example, we can see in Figure 3(b) that the
center cluster did not meet the population percentage to have two splits. Thus,
the only split is on the dimension that has the closest 50/50 split of the data.

|Si| =
⌊

lg
|Pi|
N
·M · 2s

⌋
(4)

Hybrid Indexing and Optimization The global and local dataspace segmen-
tation generates a hybrid index with one-dimensional distance-based partitions
subsequently segmented in a tune-able subset of dimensions. Due to the expo-
nential growth of the tree segments, we must limit the number of dimensions we
split on. For the local methods, L3 maintains this automatically. For the spatial
subtree segmentation, we use z-curve ordering of each partition’s sections, effi-
ciently encoded as a ternary bitstring representation of all overlapping sections
that is quickly decomposable to a list of section indices. Figure 3(b) shows an
example of this ordering with distmax11i , which also happens to be the overall
partition distmaxi. Since Pi is split twice, we have a two-digit binary encoding
of quadrants, with the upper-right of ‘11’ equating to section 3 of Pi.

4 Experiments and Results

We methodically determine the effectiveness of our hybrid index and segmenta-
tion heuristics over a wide range of dataset characteristics that lead to general-
ized conclusions about their overall performance.

Every experimental test reports a set of statistics describing the index and
query performance of that test. As an attempt to remove machine-dependent
statistics, we use the number of B+-tree nodes instead of page accesses when
reporting query results and tree size. Tracking nodes accessed is much easier
within the algorithm and across heterogeneous systems, and is still directly re-
lated to page accesses through the given machine’s page size and B+-tree leaf
size. We primarily highlight three statistics from tested queries: 1) the number
of candidate points returned during the filter step, 2) the number of nodes ac-
cessed in the B+-tree, and 3) the time taken (in milliseconds) to perform the
query and return the final exact results. Other descriptive statistics included the
B+-tree size (total nodes) and the number of dataspace partitions and sections
(of partitions) that were checked during the query. We often express the ratio
of candidates and nodes over the total number of points in the dataset and the
total number of nodes in the B+-tree, respectively, as this eliminates skewed
results due to varying the dataset.

The first experiments are on synthetic datasets so we can properly simulate
specific dataset characteristics, followed by further tests on real datasets. All
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artificial datasets are given a specified number of points and dimensions in the
d-dimensional unit space [0.0, 1.0]d. For clustered data, we provide the number
of clusters and the standard deviation of the independent Gaussian distributions
centered on each cluster (in each dimension). The cluster centers are randomly
generated during dataset creation and saved for later use. For each dataset, we
randomly select 500 points as kNN queries (with k = 10) for all experiments,
which ensures that our query point distribution follows the dataset distribution.

Sequential scan (SS) is often used as a benchmark comparison for worst-
case performance. It must check every data point, and even though it does not
use the B+-tree for retrieval, total tree nodes provides the appropriate worst-
case comparison. Note that all data fits in main memory, so all experiments are
compared without depending on the behaviors of specific hardware-based disk-
caching routines. In real-life however, disk-based I/O bottlenecks are a common
concern for inefficient retrieval methods. Therefore, unless sequential scan runs
significantly faster, there is a greater implied benefit when the indexing method
does not have to access every data record, which could potentially be on disk.

4.1 First Look: Extensions & Heuristics

The goal of our first experiment is to determine the feasibility and effectiveness
of our global and local segmentation techniques and their associated heuristics
over dataset size and dimensionality. We create synthetic datasets with 100,000
(100k) data points equally distributed among 12 clusters with a 0.05 standard
deviation (stdev) in each dimension, ranging from 8 to 512 dimensions. The
true cluster centers are used as partition reference points and each heuristic is
independently tested with 2, 4, 6, and 8 splits. Here we compare against regular
iDistance using the same true center (TC) reference points. Due to space limits,
we only present one heuristic from each type of segmentation scope, namely
G2 and L1. These methods are ideal because they enforce the total number
of splits specified, and do so in a rather intuitive and straightforward manner,
exemplifying the over-arching global and local segmentation concepts. We also
note that the other heuristics generally perform quite similar to these two, so
presentation of all results would probably be superfluous.

Figure 4 shows the performance of G2 compared to TC (regular iDistance)
over candidates, nodes accessed, and query time. Unfortunately, above 64 dimen-
sions we do not see any significant performance increase by any global heuristic.
Note that we do not show Sequential Scan (SS) results here because they are
drastically worse. For example, we see TC returning approximately 8k candidates
versus the 100k candidates SS must check.

The same three statistics are shown in Figure 5 for L1 compared to TC. Un-
like G2, here we can see that L1 greatly increases performance by returning sig-
nificantly fewer candidates in upwards of 256 dimensions. Above 64 dimensions,
we can see the increased overhead of nodes being accessed by the larger number
of splits (6 and 8), but despite these extra nodes, all methods run marginally
faster than TC because of the better candidate filtering. It should also be clear
that the number of splits is directly correlated with performance, as we can see
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Fig. 4: Global heuristic G2 with 2, 4, 6, and 8 splits over dataset dimensionality.
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Fig. 5: Local heuristic L1 with 2, 4, 6, and 8 splits over dataset dimensionality.

that 8 splits performs better than 6, which performs better than 4, etc. Of course,
the increased nodes accessed is a clear indication of the trade-off between the
number of splits and the effort to search each partition section to satisfy a given
query. Eventually, the overhead of too many splits will outweigh the benefit of
enhanced filtering power.
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Fig. 6: Comparison of TC to k-means (KM) and RAND with 6 (KM6, R6) and 12
(KM12, R12) partitions over dataset dimensionality. Note that the lines for TC and
KM12 entirely overlap.

Lastly, Figure 6 revisits a finding from our previous work [14] to show the
general performance comparison between TC and k-means (KM), with the ran-
dom (RAND) space-based partitioning method included as a näıve data-blind
approach – all using regular iDistance. Because we establish 12 well-defined clus-
ters in the dataspace, we can use this data knowledge to test KM and RAND,
each with 6 and 12 partitions, and compare them to TC (which uses the true
12 cluster centers). Unsurprisingly, we see that RAND (R6 and R12) quickly
degrades in performance as dimensionality increases. We also find that KM12
performs almost equivalent to TC throughout the tests. This provides ample
justification for the benefits of optimal data clustering for efficient dataspace
partitioning, and allows us to focus entirely on k-means for the remainder of our
experiments, which is also a much more realistic condition in applications using
non-synthetic datasets.
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4.2 Investigating Cluster Density Effects

The second experiment extends the analysis of our heuristics’ effectiveness over
varying tightness/compactness of the underlying data clusters. We again gen-
erate synthetic datasets with 12 clusters and 100k points, but this time with
cluster stdev ranging from 0.25 to 0.005 in each dimension over a standard 32-
dimensional unit space. Figure 7 reiterates the scope of our general performance,
showing SS and RAND as worst-case benchmarks and the rapid convergence of
TC and KM as clusters become sufficiently compact and well-defined. Notice
however, that both methods stabilize in performance as the stdev decreases be-
low 0.15. Essentially, the clusters become so compact that while any given query
typically only has to search in a single partition, it ends up having to search the
entire partition to find the exact results.
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Fig. 7: Comparison of iDistance partitioning strategies over cluster standard deviation.
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Fig. 8: Heuristics G2 and L1 versus KM over cluster standard deviation.

Figure 8 compares our heuristics G2 and L1 applied to k-means derived
partitions (labeled as KM, using regular iDistance). To simplify the charts, we
only look at 4 and 8 splits, which still provide an adequate characterization of
performance. We also only look at a cluster stdev of 0.15 and less, to highlight the
specific niche of poor performance we are addressing. Unfortunately, we again see
that G2 performs no better than KM, and it even takes slightly more time due to
the increased retrieval overhead and lack of better candidate pruning. However,
L1 performance drastically improves over the stalled out KM partitions, which
more than proves the effectiveness of localized segmentation heuristics.

4.3 A Real-world Comparison

Our last experiment uses a real-world dataset consisting of 90 dimensions and
over 500k data points representing recorded songs from a large music archive2.
First, we methodically determine the optimal number of clusters to use for

2 Publicly available at: http://archive.ics.uci.edu/ml/datasets/YearPredictionMSD
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k-means, based on our previous discovery of a general iDistance performance
plateau surrounding this optimal number [14]. Using this performance plateau
to choose k represents a best practice for iDistance. Although omitted for brevity,
we tested values of k from 10 to 1000, and found that iDistance performed best
around k = 120 clusters (partitions). We also discard global techniques from
discussion given their poor performance on previous synthetic tests.

Figure 9 shows our local L1 and L3 methods, each with 4 and 8 splits, over a
varying number of k-means derived partitions. Since this dataset is unfamiliar,
we include baseline comparisons of KM and SS, representing standard iDistance
performance and worst-case sequential scan performance, respectively. We see
that both local methods significantly outperform KM and SS over all tests. Also
note that L3 generally outperforms L1 due to the more appropriate population-
based distribution of splits, which translates directly to more balanced segments
of the underlying B+-tree.
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Fig. 9: Results of local methods L1 and L3 versus iDistance on real data.

5 Discussion

One topic worth discussion is the placement of reference points for creating par-
titions in the dataspace. Building on previous works [10, 14, 20], we continue to
use the k-means algorithm to cluster the data and obtain a list of cluster centers
to be used directly as reference points. However, Figure 1(b) hints at a possible
shortcoming of using k-means – specifically when building closest-assignment
partitions. Notice how large the center cluster is because of the farthest assigned
data point, and how much additional partition overlap that creates. We hypoth-
esize that just a few outliers in the data can have a tremendously negative effect
on index retrieval due to this property of k-means.

While large overlapping clusters may be somewhat mitigated by increasing
and fine-tuning the total number of clusters in k-means – as we do in the prior
experiment – the more elegant solution tackles the problem of clustering directly.
In a related work, we began investigating the idea of clustering for the sake
of indexing, by using a custom Expectation Maximization (EM) algorithm to
learn optimal cluster arrangements designed explicitly for use as reference points
within iDistance [19]. Our current findings further the motivation for this type
of work with possibly new knowledge and insights of how we might define more
optimal clusters for partitions.
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6 Conclusions and Future Work

This work introduced the foundations of iDStar, a novel hybrid index for efficient
and exact kNN retrieval in high-dimensional spaces. We developed global and
local segmentation heuristics in the dataspace and underlying B+-tree, but only
localized partition segmentation proved effective. Results show we can signifi-
cantly outperform the state-of-the-art iDistance index in clustered data, while
performing no worse in unfavorable conditions. This establishes a new perfor-
mance benchmark for efficient and exact kNN retrieval that can be independently
compared to and evaluated against by the community.

Future work surrounds the continued development of iDStar into a fully-
fledged indexing algorithm, with specific focus on real-world applications, ex-
tended optimizations, and a public repository for the community. Several di-
rections of continued research include testing other heuristics to better guide
segmentation and exploring new hybrid components to enable other filtering ca-
pabilities. We are also investigating the feasibility of dynamic index updates to
efficiently respond and tune to online and unpredictable retrieval environments.
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