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Abstract

Efficient data indexing and exact k-nearest-neighbor (kNN)
retrieval are still challenging tasks in high-dimensional
spaces. This work highlights the difficulties of indexing
in high-dimensional and tightly-clustered dataspaces by ex-
ploring several important tunable parameters for optimiz-
ing kNN query performance using the iDistance and iDStar
algorithms. We experiment on real and synthetic datasets
of varying size, cluster density, and dimensionality, and
compare performance primarily through filter-and-refine ef-
ficiency and execution time. Results show great variability
over parameter values and provide new insights and justi-
fications in support of prior best-use practices. Local seg-
mentation with iDStar consistently outperforms iDistance in
any clustered space below 256 dimensions, setting a new
benchmark for efficient and exact kNN retrieval in high-
dimensional spaces. We propose several directions of future
work to further increase performance in high-dimensional
real-world settings.

1. Introduction

Massive databases composed of rich information are be-
coming ubiquitous in the modern world. While storage
of data is becoming routine, efficiently indexing and re-
trieving it is still an important practical concern. A fre-
quent and costly information retrieval and data mining task
performed on these databases is k-nearest neighbor (kKNN)
search, which returns the k£ most similar records to any given
query point. While a database management system (DBMS)
is highly optimized for a few dimensions, most traditional
indexing algorithms (e.g., the B-tree and R-tree families) de-
grade quickly as the number of dimensions increase. Often
in these circumstances, the most efficient retrieval method
available is a sequential (linear) scan of every single record
in the database.

Many algorithms have been proposed in the past with lim-
ited success for true high-dimensional indexing, and this
general problem is commonly referred to as the curse of
dimensionality (Bellman 1957). In practice, this issue is
often mitigated by applying dimensionality reduction tech-
niques before using popular multi-dimensional indexing
methods, and sometimes even by adding application logic
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to combine multiple independent indices or requiring user
involvement during search. However, modern applications
are increasingly employing highly-dimensional techniques
to effectively represent massive data. For example, 128-
dimensional SIFT features (Lowe 1999) are quite popular
in Content-Based Image Retrieval (CBIR) systems where it
is of critical importance to be able to comprehensively index
all dimensions for a unified similarity-based retrieval model.

This work builds upon previous analyses of iDistance par-
titioning strategies and iDStar extensions (Schuh et al. 2013;
Wylie et al. 2013; Schuh, Wylie, and Angryk 2013), with
the continued goal of increasing overall performance of in-
dexing and retrieval for kNN queries in high-dimensional
and tightly-clustered dataspaces. Here we address the dif-
ferences between these two types of dataspaces through the
analysis of several tunable parameters. We assess perfor-
mance efficiency by the total and accessed number of B*-
tree nodes, number of candidate data points returned from
filtering, and the time taken to build the index and perform
queries. In combination, these metrics provide a highly de-
scriptive and unbiased quantitative benchmark for indepen-
dent comparative evaluations.

The rest of the paper is organized as follows. Section 2
provides a brief background of related works, followed by an
overview of iDistance and iDStar in Section 3. We present
experimental results in Section 4 and close with conclusions
and future work in Section 5.

2. Related Work

The ability to efficiently index and retrieve data has be-
come a silent backbone of modern society, and it de-
fines the capabilities and limitations of practical data usage.
While the one-dimensional B*-tree (Bayer and McCreight
1972) is foundational to the modern relational DBMS, most
real data has many dimensions that require efficient ac-
cess. Mathematics has long-studied the partitioning of
multi-dimensional metric spaces, most notably Voronoi Di-
agrams and the related Delaunay triangulations (Aurenham-
mer 1991), but these theoretical solutions can often be too
complex for practical application. To address this issue,
many approximate techniques have been proposed for prac-
tical use. One of the most popular is the R-tree (Guttman
1984), which was developed with minimum bounding rect-
angles (MBRs) to build a hierarchical tree of successively



smaller MBRs containing objects in a multi-dimensional
space. The R*-tree (Beckmann et al. 1990) enhanced search
efficiency by minimizing MBR overlap. However, these
trees (and most derivations) quickly degrade in performance
as the number of dimensions increases (Berchtold, Bohm,
and Kriegal 1998; Ooi et al. 2000).

Research has recently focused on creating indexing meth-
ods that define a one-way lossy mapping function from a
multi-dimensional space to a one-dimensional space that can
then be indexed efficiently in a standard B*-tree. These
lossy mappings require a filter-and-refine strategy to pro-
duce exact query results, where the one-dimensional index
is used to quickly retrieve a subset of the data points as can-
didates (the filter step), and then each of these candidates is
verified to be within the specified query region in the origi-
nal multi-dimensional space (the refine step). Since check-
ing the candidates in the actual dataspace is costly, the goal
of the filter step is to return as few candidates as possible
while retaining the exact results to satisfy the query.

First published in 2001, iDistance (Yu et al. 2001; Ja-
gadish et al. 2005) specifically addressed exact kNN queries
in high-dimensional spaces and has proven to be one of the
most efficient state-of-the-art techniques available. In recent
years, iDistance has been used in a number of demanding ap-
plications, including: large-scale image retrieval (Zhang et
al. 2006), video indexing (Shen, Ooi, and Zhou 2005), mo-
bile computing (Ilarri, Mena, and Illarramendi 2006), peer-
to-peer systems (Doulkeridis et al. 2007), and video surveil-
lance retrieval (Qu, Chen, and Yang 2008). As informa-
tion retrieval from increasingly high-dimensional and large-
scale databases continues to grow in need and ubiquity, the
motivations for furthering this research are clearly present.
While many recent works have shifted focus to approxi-
mate nearest neighbor techniques (Indyk and Motwani 1998;
Tao et al. 2009) that can satisfy some of these applications,
in general they are outside the scope of efficient exact kNN
retrieval presented in this paper.

3. Algorithms

We begin with a brief overview of the original iDistance al-
gorithm and explain the basic index and query mechanisms.
These are also the foundations of iDStar, a new hybrid in-
dex that incorporates heuristic-guided spatial segmentation
to better prune congested areas of the dataspace.

iDistance

The basic concept of iDistance is to segment the dataspace
into disjoint spherical partitions, where all points in a parti-
tion are indexed by their distance to the reference point of
that partition. This results in a set of one-dimensional dis-
tance values for each partition, where each distance is re-
lated to one or more data points within that partition. The
algorithm was motivated by the ability to use arbitrary refer-
ence points to determine the similarity between any two data
points in a metric space, allowing single dimensional rank-
ing and indexing of data despite the original dimensionality
(Yu et al. 2001; Jagadish et al. 2005).

distmaz;

Figure 1: A query sphere ¢ with radius r and the searched
regions (shaded) in the two overlapping partitions P; and
P; defined by their reference points O; and Oj, and radii
distmax; and distmax;, respectively.

Building the Index The index is best built with data-
based partitioning strategies, which adjust the size and lo-
cation of partitions in the dataspace according to the un-
derlying data distribution, which greatly increases retrieval
performance in real-world settings (Yu et al. 2001; Jagadish
et al. 2005; Schuh et al. 2013). The alternative is space-
based partitioning, which statically partitions the dataspace
without information about the data, but these strategies are
found to be highly susceptible to dimensionality (Schuh et
al. 2013). For all partitioning strategies, data points are as-
signed to the single closest partition based on Euclidean dis-
tance to each partition’s representative reference point.

Formally, we have a set of partitions P = (P,..., Py)
with respective reference points O = (Oq,...,0Op). We
will let the number of points in a partition be denoted |P;|
and the total number of points in the dataset be N. After the
partitions are defined, a mapping function is applied to cre-
ate separation in the underlying B¥-tree between each parti-
tion, ensuring that any given index value represents a unique
distance for exactly one partition. This is a lossy mapping
function, which is mathematically surjective, but not injec-
tive, so all points equi-distant from the reference point will
map to the same one-dimensional value.

The index value y,, for a point p assigned to a partition F;
with reference point O; is given by Equation 1, where dist()
is any metric distance function,  is the partition index, and ¢
is a constant multiplier for creating the partition separation.
While constructing the index, each partition P; records the
distance of its farthest point as distmax;. We can safely
and automatically set ¢ = 2\/&, which is twice the maxi-
mum possible distance of two points in a d-dimensional unit
dataspace, and therefore no index value in partition P; will
clash with values in any other partition P;;.

Yp =1 X ¢+ dist(O;, p) (1)

Querying the Index The index should be built in such a
way that the filter step of a query returns the fewest possible
candidate points while retaining the true k-nearest neigh-



distmaz; = distmaz!

distmaz; =distmaz)

(a)

(b)

Figure 2: (a) Conceptual local splits S¥, SY, and S7 and their effect on query search ranges in overlapping partitions and
sections. (b) The local population-based splits applied to each partition by the L3 heuristic on the example dataset.

bors. Fewer candidates reduce the costly refinement step
which must verify the true multi-dimensional distance of
each candidate from the query point. Performing a query
q with radius r consists of three steps: 1) determine the set
of partitions to search, 2) calculate the search range of each
partition in the set, and 3) retrieve the candidate points and
refine by their true distances. The query is finished when it
can guarantee that no other point yet to be retrieved can be
closer to ¢ than the farthest point already in the k-set.
Figure 1 shows an example query sphere contained com-
pletely within partition P; and intersecting partition P;, as
well as the shaded ranges of each partition that need to be
searched. For each partition P; and its distmax;, the query
sphere overlaps the partition if the distance from the edge
of the query sphere to the reference point O; is less than
distmax;, as defined in Equation 2. There are two possible
cases of overlap: 1) g resides within P;, or 2) ¢ is outside
of P;, but the query sphere intersects it. In the first case, the
partition needs to be searched both inward and outward from
the query point over the range (¢=1), whereas in the second
case, a partition only needs to be searched inward from the
edge (distmaz;) to the closest point of query intersection.

dist(O;,q) — r < distmax; 2)

iDStar

In previous work, it was shown that in high-dimensional and
tightly-clustered spaces, iDistance stabilizes in performance
by accessing an entire partition (k-means derived cluster) to
satisfy a given query (Schuh et al. 2013). While only access-
ing a single partition is already significantly more efficient
than sequential scan, this weakness was the main motiva-
tion to explore further dataspace segmentation extensions to
enhance retrieval performance in these spaces. These exten-
sions are similar in concept to the works of the iMinMax(#)
(Ooi et al. 2000) and SIMP (Singh and Singh 2012) algo-
rithms, whereby we can incorporate additional dataspace
knowledge at the price of added algorithmic complexity and

performance overhead. Recently published work introduced
iDStar and proved the feasibility of our first heuristic-guided
extensions (Schuh, Wylie, and Angryk 2013).

For official vernacular, it can be said we further separate
dense areas of the dataspace by splitting partitions into dis-
joint sections corresponding to separate segments of the B¥-
tree that can be selectively pruned during retrieval. In other
words, we apply a number of dimensional splits in the datas-
pace which sections the partitions into B*-tree segments.

We focus our discussion on our local segmentation ex-
tension, which explicitly splits the dataspace of each parti-
tion separately. To achieve this, several modifications to the
indexing and retrieval algorithms are required, which im-
plicitly affect our use of the underlying B*-tree . First, the
mapping function is updated to create a constant segment
separation within the already separated partitions. Equation
3 describes the new function with the inclusion of the sec-
tional index 7, and s as the total number of splits applied to
the partition. Note that a partition with s splits is divided into
2% sections, so we must be careful to appropriately bound the
number of splits applied. Second, after identifying the par-
titions to search, we must identify the sections within each
partition to actually search, as well as their updated search
ranges within the B¥-tree. This also requires the overhead
of section-supporting data structures in addition to the exist-
ing partition-supporting data structures, but this extra space
cost is negligible compared to the added time costs.

yp:z'xc—I—ij%—Fdist(Oi,p) 3)

The local technique is a purposeful partition-specific seg-
mentation method based only on local information of the
given partition rather than the global data characteristics of
the entire space. Local splits are defined by a tuple of par-
tition and dimension, whereby the given partition is split in
the specified dimension, and all splits are made directly on
the partition reference point value. Figure 2(a) shows a con-
ceptual example of local splits.



During index creation we now also maintain a sectional

distmaz;] (for partition P; and section j). This allows the
addition of a section-based query overlap filter which can
often prune away entire partitions that would have otherwise
been searched. This can be seen in Figure 2(a), where the
original partition distmax is now a dotted line and a new
distmax is shown for each individual partition section.

Within each partition, we further split the data as evenly
as possible to maximize the amount of separation in the B*-
tree by creating more unique index values. Since splits are
made at the reference points, we collect additional spatial
statistics from each to rank the dimensions by those closest
to an equal (50/50) population split. We denote s as the
maximum number of splits any partition may have. Our
initial heuristic uniformly applied s splits to each partition
using the top ranked dimensions for each. However, if the
population is already small enough, it may not be benefi-
cial to split the partition at all. Therefore, we designed an
automatic method for optimal population analysis. For this
heuristic (L3), we first use s to calculate the maximum num-
ber of underlying B¥ -tree segments that would be uniformly
applied, and then we distribute them based on relative parti-
tion population. This automatically applies additional splits
to partitions in dense areas of the dataspace by taking splits
away from other partitions where they are not needed. Most
importantly, it still maintains the upper-bound on B¥-tree
segments and resultant tree depth.

Formally, we have a nested set of splits S = (S1 ..., Snr)
where S; represents the set of dimensions to split on for par-
tition P;. Given a maximum granularity for the leaves in
the B*-tree, we can calculate how many splits each parti-
tion should have as a percentage of its population to the total
dataset size, shown in Equation 4. For example, we can see
in Figure 2(b) that the center cluster did not meet the popu-
lation percentage to have two splits. Thus, the only split is
on the dimension that has the closest 50/50 population split.

| B s
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The local dataspace segmentation generates a hybrid in-
dex with one-dimensional distance-based partitions subse-
quently segmented in a tune-able subset of dimensions. Due
to the exponential growth of the tree segments, we must
limit the number of dimensions we split on, which L3 main-
tains automatically. For the spatial subtree segmentation, we
use z-curve ordering of each partition’s sections, efficiently
encoded as a ternary bitstring representation of all overlap-
ping sections that is quickly decomposable to a list of sec-
tion indices. Figure 2(b) shows an example of this ordering
with distmax}!, which also happens to be the overall parti-
tion distmax;. Since P; is split twice, we have a two-digit
binary encoding of quadrants, with the upper-right of ‘11’

equating to section 3 (zero-based) of F;.

Experiments and Results

Every experiment reports a set of statistics describing the in-
dex and query performance of that test. We primarily high-
light three statistics from tested queries: 1) the number of

candidate points returned during the filter step, 2) the num-
ber of nodes accessed in the BT -tree, and 3) the time taken
(in milliseconds) to perform the query and return the final
results. Other descriptive statistics include the BT -tree size
(total nodes) and the number of dataspace partitions and sec-
tions (of partitions) that were checked during the query. We
often express the ratio of candidates and nodes over the to-
tal number of points in the dataset and the total number of
nodes in the BT -tree, respectively, as this eliminates skewed
results due to varying dataset characteristics. Note that all
data fits in main memory, so all experiments are compared
without costly I/O bottlenecks common in practice.

The first experiments are on synthetic datasets in a d-
dimensional unit space [0.0,1.0]¢. We provide the num-
ber of clusters and the standard deviation of the indepen-
dent Gaussian distributions (in each dimension) for each
randomly generated cluster center. For each dataset, we ran-
domly select 500 points as kNN queries, which ensures that
our query point distribution follows the dataset distribution.

Figure 3 illustrates the curse of dimensionality quite well
through various pair-wise distance statistics on a synthetic
clustered dataset. These are collected for every data point
within the same partition, over all partitions of the dataset.
In other words, we are explicitly looking at the distance be-
tween intra-cluster data points. Notice how the standard
deviation (stddev) and relative average distance normalized
by the maximum distance in the given dimensional space
(relavg) remain essentially constant over dimensionality, but
minimum and maximum distances are converging on the in-
creasing average distance.

[>—> min
08 avg
X—X max
G—O stddeyv|
relavg

Distances

16 32 64 128 256 512
Dimensionality

Figure 3: The curse of dimensionality through pair-wise
intra-cluster distance over all partitions.

As dimensionality grows, the average distance between
any two intra-cluster data points grows, but the distribution
of these distances converges on everything becoming equi-
distant from each other. This is similar to tightly-clustered
spaces, whereby all points become equidistant, however im-
portantly, here the average distances decrease as cluster den-
sity (or compactness) increases.

Figure 4 shows the performance of iDStar local segmen-
tation (L3) over varying dimensionality using 4, 8, and 12
splits determined by the L3 heuristic, compared to standard
iDistance (TC) using the same underlying true cluster cen-
ters as reference points. Here we see a clear trade-off be-
tween the filtering power of local segmentation, and the per-
formance overhead of adding additional splits. Under 256
dimensions, the additional filtering power not only works
significantly better, but it also takes very little overhead —
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Figure 5: Comparing iDistance (TC) to iDStar (L3) with 4, 8, and 12 splits over dataset cluster standard deviation.

while above this there is little benefit in using it. One would
hypothesize that even more splits would further mitigate the
curse of dimensionality for filtering candidates, but the over-
head cost in accessed nodes will dramatically increase and
likely be impractical.

Figure 5 shows the performance of iDStar local seg-
mentation (L3) in tightly-clustered data similarly using
4, 8, and 12 splits compared to iDistance (TC). While
the distance-phenomenon is somewhat similar in tightly-
clustered spaces, we can see a noticable difference as clus-
ters become tighter. First notice that when clusters are quite
spread out (0.25 stdev in each dimension) iDStar cannot fil-
ter the candidates any better than iDistance, but it suffers in
time because of the overhead of additional nodes accessed.
The real benefit is seen from 0.15 stdev and smaller, when
proper segmentation eliminates many potential candidates,
even though the space is extremely dense.

The difference between these two sets of charts exem-
plifies how difficult indexing high-dimensional spaces are
compared to well-clustered, but congested areas. Consider
again the conceptual examples of our spherical partitions in
Figures 1 and 2(a). As we decrease standard deviation of
these clusters, the partitions collapse inward to the reference
point, where intra-cluster distances become equally small,
but inter-cluster distances increase. On the other hand, as we
increase dimensionality, these spherical partitions turn into
ring-like bands of equally large distances that continue to
expand away from the reference points. This leads to more
overlapping of partitions and, given the equi-distant points,
more candidates being returned from each search.

Next we look at how the number of partitions affects per-
formance of iDistance (and also iDStar). Here we use a real
world dataset of SIFT descriptors' consisting of 1 million
points in 128 dimensions. Since these characteristics do not
change, we tune performance by varying the number of par-
titions used, shown in Figure 6. The first chart shows that as
we increase above 64 total partitions, queries access fewer
and fewer partitions, primarily because more and more are

"http://corpus-texmex.irisa.ft/

empty. The “other” line represents partitions which are used
(non-empty) but not searched.

The second chart in Figure 6 uses proportions to present
four related statistics: 1) the percentage of candidates
checked, the percentage of nodes accessed, the average fill
of a node in the tree, and the relative amount of total nodes
in the tree, based on the total node count for 1024 partitions.
First, we see the expected results that more total partitions
lead to fewer candidates and nodes accessed. However, we
can see this reduction stagnates above 256 partitions, which
is also where we see the structure of the tree change. Notice
around 128 partitions, we see a reduction in total nodes, but
an increase in average node fill, thereby indicating a more
compact tree. This is a somewhat unexpected result, which
might be caused in part by the constant partition separation
and the increase in unique index values.

Lastly, the third chart in Figure 6 shows the time taken to
complete three actions: 1) calculate the index values from
the dataset, 2) build the tree of index values, and 3) perform
a query. Here we use the relative values again (based on
values at 1024 partitions) so we can compare all three side-
by-side. Interestingly, the tree time is rather constant, but it
does take somewhat longer when more partitions are used.
This is likely caused by the more compact tree and possi-
bly more tree re-organization steps during loading. While
query time decreases as expected, given the fewer nodes and
candidates, the most important time consideration is clearly
the initial index construction. While this is essentially a pre-
process step in our setup, it is worthwhile to note for real
world application and index maintenance.

Conclusions and Future Work

We show that iDStar performs well in tightly-clustered and
high-dimensional dataspaces. Unfortunately, the curse of
dimensionality still remains an issue beyond 256 dimen-
sions, where Euclidean distance offers little differentiation
between data points (and index values). We find the number
of partitions used can affect the quality of the index beyond
the general performance metrics of candidates, nodes, and
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query time. The pattern of performance changes on real data
supports prior findings with new insights into why iDistance
performance plateaus around 2D partitions.

Future work continues the development of iDStar into
a fully-fledged indexing algorithm, with specific focus on
real-world applications, extended optimizations, and a pub-
lic repository for the community. We are further exploring
novel EM algorithms to perform clustering for the sake of
indexing which will improve reference point quality, as well
as developing an iDStar subspace segmentation extension to
greatly enhance performance by retaining useful Euclidean
distance information in extremely high-dimensional spaces.
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