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a b s t r a c t

Large-scale data mining is often aided with graphic visualizations to facilitate a better understanding of
the data and results. This is especially true for visual data and highly detailed data too complex to be easily
understood in raw forms. In this work, we present several of our recent interdisciplinary works in data
mining solar image repositories and discuss the over-arching need for effective visualizations of data,
metadata, and results along the way. First, we explain the complex characteristics and overwhelming
abundance of image data being produced by NASA’s Solar Dynamics Observatory (SDO). Then we discuss
the wide scope of solar data mining and highlight visual results fromwork in data labeling, classification,
and clustering. Lastly, we present an overview of the first-ever Content-Based Image Retrieval (CBIR)
system for solar images, and conclude with a brief look at the direction of our future research.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The abundance of rich data sources in our modern society fu-
els the need for practical and innovative large-scale data mining
research and applications. Much of this work requires specialized
data analysis, and it often requires extensive domain knowledge to
contextualize the data and present the results. With data storage
costs plunging and data collection opportunities soaring, it seems
common practice (and human nature) to maximize the quantity
and quality of data whenever possible. The solar physics commu-
nity is no exception to this trend, and NASA’s most advanced ob-
servational satellite to date, the Solar DynamicsObservatory (SDO),
is currently capturing over 70,000 high-resolution images of the
sun (roughly 1.5TB of raw data) each and every day (Martens et al.,
2011).

The need for large-scale data mining in solar physics is imper-
ative, as the sheer amount of data produced by the SDO can only
be comprehensively processed by automated methods. Tradition-
ally, research in solar physics has been guided by case studies of
individual events or phenomena, but with the paradigm shift from
small to large-scale solar science taking root, there are many new
challenges facing the field. Not only is solar image data highly com-
plex, but so is the SDO data repository, composed of a variety of
asynchronous instrumentation taking approximately eight 4096×
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4096 pixel images every ten seconds for at least a span of five years
(Pesnell et al., 2012). Furthermore, within this data there exist
solar science-based events with wide ranges of definable and
identifiable characteristics, including highly dependent spatial and
temporal attributes. Our interdisciplinary research group of com-
puter scientists and solar physicists at Montana State University
(MSU) has found that many of these challenges are inspiring novel
research across both fields, while facilitating excellent collabora-
tion opportunities in the pursuit of real world data mining solu-
tions.

This paper presents, for the first time, a general overview of the
wide variety of data mining research and development conducted
by the DataMining Lab atMSU, within the domain of solar physics.
Specifically, our lab has been partially funded by NASA to create
a Content-Based Image Retrieval (CBIR) system for solar imagery.
Thiswill be the first systemof its kind in the field, and it is primarily
meant to facilitate the search of similar images of interest over
the vast image archives. While developing this real world system,
we have faced many interesting challenges and experiences from
the unique aspects of solar data that relate directly to new and
important research questions in computer science, data mining,
and machine learning. To combat serious cases of information
overload from the data, metadata, and results, we have also had
to develop extensive visualization tools tailored to our specific
data domain and research applications.We presentmany different
figures to showcase the importance of these visualizations, and for
supplemental information and visuals we direct the reader to our
website at http://dmlab.cs.montana.edu/solar/.
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Section 2 begins with a brief overview of the SDO mission and
our lab’s sponsored involvement in the data analysis process. In
Section 3 we highlight several specific research projects, ongoing
challenges, and the overall importance of visualization. We then
present our first fully operational CBIR system prototype in Sec-
tion 4 and discuss some of the capabilities it offers. Finally, we
conclude in Section 5 and summarize our current work and future
directions.

2. SDO data

2.1. The solar dynamics observatory

The SDO is a 3-axis stabilized spacecraft in geo-synchronous or-
bit designed to continuously capture full-disk images of the Sun.
The purpose of the mission is to gather knowledge about the me-
chanics of solar magnetic activity, from the generation of the solar
magnetic field, to the release of magnetic energy in the solar wind,
solar flares, coronal mass ejections (CMEs), and other events (Pes-
nell et al., 2012). Launchedon February 11, 2010, the SDOmission is
the firstmission of NASA’s LivingWith a Star (LWS) program, a long
term project dedicated to studying aspects of the Sun that signif-
icantly affect human life, with the goal of eventually developing a
scientific understanding sufficient for prediction (Withbroe, 2000).

The amount of solar data produced by the SDO mission is
already larger than all previous solar data archives combined
(Martens et al., 2011). It carries three independent instruments:
the Extreme Ultraviolet Variability Experiment (EVE), which takes
measurements of the spectral distribution of extreme ultraviolet
radiation propagating from the sun (Woods et al., 2012), the Helio-
seismic and Magnetic Imager (HMI), which captures the motion of
the sun’s surface and measures the surface magnetic field (Scher-
rer et al., 2012), and the Atmospheric Imaging Assembly (AIA),
which captures full-disk images of the sun in ten separate elec-
tromagnetic wavelength bands across the visual and ultra-violet
spectrum, each selected to highlight specific elements of known
solar activity (Lemen et al., 2012). An example of how these vari-
ous wavelengths represent different layers of the Sun is shown in
Fig. 1, which also includes extrapolated magnetic field lines on the
rightmost slice.

Our work is primarily focused on the AIA images, as these
are most applicable to a CBIR system and exhibit familiar ‘‘Sun-
like’’ properties that human users of all levels of expertise can
understand and identify. Each AIA channel (centered on a spe-
cific wavelength or waveband) is uniquely (and arbitrarily) given a
color-mapping from the grayscale data for easier visualization
and interpretation, especially when combined together like Fig. 1.
These images are now the standard source for news and me-
dia outlets when reporting on current solar activity. All SDO
(and NASA) data has an open-access policy (http://data.nasa.gov/
about/) and is available to the general public through a variety of
distribution channels. Several popular websites include http://
sdo.gsfc.nasa.gov/data/, http://www.solarmonitor.org/, and http://
www.helioviewer.org/, and data can even be accessed from smart
phones and desktop applications, such as the JHelioviewer soft-
ware (Muller et al., 2009).

2.2. Feature Finding Team (FFT)

The issue of large-scale automated analysis was addressed by
NASA, who selected an international consortium of independent
groups, named the SDO Feature Finding Team (FFT), to produce
a comprehensive set of automated feature recognition modules
(Martens et al., 2011) (http://solar.physics.montana.edu/sol_phys/
fft/). As one of these modules, our group at MSU is building a
trainable module for use in our CBIR system for solar images.
All modules are provided with specialized access to the raw data
pipeline for near-real-time data analysis and event detection,
which is greatly beneficial but also challenging, as real-time
Fig. 1. Visualizing layers of the Sun through various SDO data and metadata.
Courtesy of NASA/SDO and the AIA, EVE, and HMI science teams. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

constraints often impose limits on practical effectiveness. Even
though data is then made publicly accessible in a timely fashion,
because of the overall size, only a relatively small window of data
is held on disk for on-demand access, while long-term storage is
achieved with tape archives.

Metadata about solar events can be downloaded from the
Heliophysics Event Knowledgebase (HEK) (Hurlburt et al., 2012).
The HEK is intended to be a cross-mission metadata repository of
wide-ranging solar event reports and information. This metadata
can be downloaded manually through the official web interface
at http://www.lmsal.com/isolsearch, but after finding several
limitations towards large-scale event retrieval, we decided to
develop our own software application named QHEK (for ‘‘Query
HEK’’), available for free. The QHEK program uses the HEK’s web
API pagination feature to retrieve all the results for a given search
period despite the possibly lengthy duration of this period, while
retaining all filter ability available through the standard website
interface. It also includes other beneficial functionality, such as
parsing the retrieved event data files and extracting specific event
attributes from the metadata. While most of the FFT modules
report event detections to the HEK, several produce much larger
and extensive metadata catalogs that are hosted separately in
alternative formats, such as the products of our trainable module,
which are available through MSU.

2.3. Image parameters and heatmap plots

Our first obstacle towards a reliable CBIR systemon thismassive
stream of data was image parameter extraction. Since most solar
phenomena typically occupy relatively small regions of a full-disk
AIA image, we first segment each image by a static, data-agnostic
64 × 64 grid and then extract our image parameters from each
individual image cell. Fig. 2 shows an example of this process
(using a 16 × 16 grid on an H-α image) for a single cell and all
ten extracted image parameters, which are defined in Table 1.
This results in 4096 cells with 10 parameters each, or 40,960 total
parameters (dimensions, attributes, etc.) per image. In previous
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Fig. 2. An example of our parameter extraction process for a single image cell from
a 16 × 16 grid-segmented image.

works, we evaluated a variety of possible numerical parameters
extracted from the TRACE mission (Handy et al., 1999) images
(prior to the SDO), and the best ten were chosen based on their
effective image representation as well as efficient processing time
(Banda and Angryk, 2010a,b).

It is important to understand that the need to balance a high
quality image representationwith computational and storage costs
meant that additional and more complex parameters were infea-
sible to use. However, with over 40,000 real-valued parameters
per image, this is still an overwhelming amount of data for a hu-
man to digest and conceptualize. Visualizing our image representa-
tions as parameter ‘‘heatmap’’ plots proved a simple and effective
way to gain an immediate understanding of our data. An example
heatmap plot of each parameter on the same SDO AIA 94 Å image
is shown in Fig. 3, where each image plot is now only 64×64 pixels
(each pixel representing a single extracted cell), and independently
normalized from 0.0 (dark blue) to 1.0 (bright red). Note for refer-
ence, the original solar image can be seen in the top of Fig. 7. We
also created movies of these plots to empirically evaluate our pa-
rameters ability to capture solar phenomena as they evolve over
time—and they do so with striking similarity to the real images,
indicating we indeed have sensible image representations. A sam-
ple of additional plots and movies are available on our website
(http://dmlab.cs.montana.edu/solar/).

3. Data mining results

Much like our parameter extraction, the efforts to empirically
observe and verify our data mining results are enhanced tremen-
dously by visualizations. While not all of our work is directly vi-
sual, such as high-dimensional indexing techniques (Schuh et al.,
2014b) to facilitate similarity search and spatiotemporal frequent
patternmining (Pillai et al., 2012) towards possible predictive abil-
ities, almost all of it is related to some sort of visualizable end re-
sult. In this section, we briefly highlight some interesting aspects
of our research that are aided directly through visualizations.

3.1. Supervised classification

Beforewe can use any supervisedmachine learning techniques,
we have to have labeled data to train the learning algorithm. A
Table 1
Defining theMSU FFT image parameters, where L stands for the number of pixels in
the cell, zi is the ith pixel value, m is the mean, and p(zi) is the grayscale histogram
representation of z at i. The fractal dimension is calculated based on the box-
counting method where N(e) is the number of boxes of side length e required to
cover the image cell.

Label Name Equation

P1 Entropy E = −
L−1

i=0 p(zi) log2 p(zi)

P2 Mean m =
1
L

L−1
i=0 zi

P3 Standard deviation σ =


1
L

L−1
i=0 (zi − m)2

P4 Fractal dimensionality D0 = lime→0
logN(ϵ)

log 1
ϵ

P5 Skewness µ3 =
L−1

i=0 (zi − m)3p(zi)

P6 Kurtosis µ4 =
L−1

i=0 (zi − m)4p(zi)

P7 Uniformity U =
L−1

i=0 p2(zi)
P8 Relative smoothness R = 1 −

1
1+σ 2(z)

P9 Tamura contrast *see Tamura et al. (1978)
P10 Tamura directionality *see Tamura et al. (1978)

data label categorizes a data instance as a specific type (or class) of
data, such as for example, indicating that an area of a solar image
contains an active region or coronal hole. Using this set of labeled
data instances, we can train an algorithm to classify non-labeled
instances. However, this is especially difficult in solar physics
where no ground truths are available, i.e., there does not exist an
explicit 100% correct list of every possible label for an image. Even
the use of human-based labels has shown to be difficult because of
the inherent bias in each individual human observer (Bernasconi
et al., 2005). Therefore, the best we can do is utilize the data labels
that do exist, and then carefully oversee the training and testing
process of classification to ensure sensible and intended results. As
we show next, this scrutinizing task can be greatly aided with data
label visualization.

During development of our module, prior to the SDO, we tested
the effectiveness of event-specific detection, thereby providing
support not only for our image representation quality, but also
the independently produced event metadata used for supervised
learning (Schuh et al., 2014a). We trained several classifiers to
identify solar filaments, based on metadata created by another
group of the SDO FFT, the Advanced Automated Solar Filament De-
tection and Characterization Code (AAFDCC) module (Bernasconi
et al., 2005). Filament attributes reported by the AAFDCC, such as
the total length and orientation of each filament, were used to ap-
proximate bounding boxes as data instance labels. These bound-
ing boxes were then overlayed on our fixed grid-based image cells,
so that each individual image cell (data instance) represented by
its ten extracted image parameters could be given a class label of
filament or no-filament. Only after these labels are derived and
applied as our ground truth can supervised classification be per-
formed. It also enables supervised attribute evaluation, which we
used to assess the general importance of each of our image param-
eters for the classification tasks (Banda and Angryk, 2010b; Schuh
et al., 2014a).

The creation of these estimated bounding boxes followed well-
known problems of producing noisy (or inaccurate) data labels
(Shekhar and Chawla, 2003). In our case, sometimes only a portion
of an image cell shows the presence of a filament, or vice versa.
While such markings are perfectly useful for human experts, they
cause inherent challenges for machine learning algorithms. No
matter which label is assigned to a cell, it will more than likely
be partially incorrect, and learning (training and testing) will
suffer. Therefore, we explored three different labeling methods to
assess the effects of this noise under different scenarios, shown
in the top row of Fig. 4, where cells outlined in yellow are
labeled as filaments, green are non-filaments, and cells in blue are
discarded from the dataset prior to training. From left to right,
the three labeling methods are based on the filaments’ center
locations (center), an estimated minimum bounding rectangle

http://dmlab.cs.montana.edu/solar/
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Fig. 3. Heatmap plots of all ten image parameters for a single SDO AIA 94 Å image, where each plot is individually normalized from 0.0 (dark blue) to 1.0 (bright red). The
original image can be seen in the top row of Fig. 7. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Three methods (from left-to-right) of derived data labels (top), where yellow cells are labeled filaments, and the corresponding classification results (bottom), where
green cells indicate correct filament classification. Other colors explained in detail in text. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
(MBR) roughly containing most of the blob-shaped filament
(est-MBR), and a combination of the two which discards all cells
in est-MBR that are not also center cells (sub-MBR). Here we can
clearly see howwell our labels represent the actual filament events
in a single image, and we can already make hypotheses about the
possible effects of the different labeling methods.

The bottomof Fig. 4 visualizes the classifier results, correspond-
ing to the above labelingmethod and the four possible outcomes of
binary classification, typically referred to as a confusion matrix or
truth table. Here, cells are outlined and color-coded as follows: (1)
true positive, where the classifier and AAFDCCmodule agreed on a
filament label (in green), (2) false positive, where the classifier la-
beled the cell a filament, but the AAFDCC module did not (in blue),
and (3) false negative, where the classifier did not label the cell
as a filament, but the AAFDCC module did (in red). The true neg-
ative cells – where the classifier and AAFDCC module agreed the
cell does not contain a filament – were ignored here for a cleaner
visualization.

With the help of these visualizations, we can quickly identify
the strengths andweaknesses of not only the trained classifiers, but
also the inherently noisy labeling methods based on bounding box
regions. For example, in the est-MBR column, notice that the large
filament in the bottom of the image is actually classified better
than the visualized confusion matrix (truth table) results indicate.
In other words, for this filament our classifier gets two cells
‘‘wrong’’ (shown in blue) that are not labeled filament even though
they clearly show presence of a filament, and nine cells ‘‘wrong’’
(shown in red) that are labeled filament but do not actually appear
to contain one. These ‘‘errors’’ mean that our overall statistical
accuracy, calculated from true positives and true negatives, is
actually lower than is clearly evident to a human observer.

The results of this work have led to newwork (not yet ready for
publication) in more advanced classification and evaluation meth-
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Fig. 5. (a) An example of HEK metadata from six event types overlayed on an SDO AIA image. (b) Clear bands of activity from active region and coronal hole events over
time. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
ods utilizing spatiotemporal properties,which try tomitigate these
specific errors. First, through actual classification algorithmswhere
we can incorporate spatial and temporal neighborhoods to better
predict the current cell, e.g., if all neighboring cells are predicted
as an event, then the likelihood the current cell also being that
event increases. Similarly, the cell is more likely to have the
same label it previously had, which helps smooth predictions over
time. Second, through the modified evaluation of said predictions
based on the quality of labels. For example, this can be applied
either spatially, where misclassified cells near potentially noisy
labels are less erroneous than misclassifications in clearly un-
ambiguous neighborhood, or temporally, where a cell might be
misclassified very shortly before or after an actual event, which
would be less severe than a misclassification where no labels have
changed for a long period of time.

3.2. Data labels from the HEK

While our previous label metadata was provided directly from
an internal module report, Fig. 5(a) shows an example of six
types of solar events reported publicly to the HEK from fellow
FFT modules, specifically: active regions (AR) (Verbeeck et al.,
2014), coronal holes (CH) (Verbeeck et al., 2014), filaments (FI)
(Bernasconi et al., 2005), flares (FL) (Winter, 2014), sigmoids (SG)
(Martens et al., 2011), and sunspots (SS) (Martens et al., 2011).
We color-code and overlay the events on the appropriate SDO
AIA images (by time and wavelength) and show the bounding
boxes, and when available the detailed event boundary outlines,
referred to in the community as ‘‘chain codes’’. Here you can clearly
see the variability in characteristics of different types of events,
such as size, shape, and location. When these plots are viewed
over time it especially highlights the differences between event-
specific reporting details, such as total event counts, evolution and
duration of event instances, and frequency of event reporting. An
interesting example of visualizing the event areas over time also
empirically re-affirmed the well-known (by solar science experts)
bands of activity for active regions and coronal holes, shown in
Fig. 5(b)wheremore event occurrences in the same location results
in a less transparent color.

Theusefulness of large-scale datasets of solar images and events
for the data mining and machine learning communities cannot be
overstated. By combining the image parameters from our train-
able module with the region-based event labels from the HEK, we
Fig. 6. An abstract example of spatiotemporal events and possible patterns.

can create – for the first time in solar physics – a standardized
and ready-to-use solar image dataset for general image processing
research without requiring the necessary background knowledge
and domain expertise to properly prepare it. The first published
version of this dataset spans the first six months of 2012 and con-
tains over 15,000 images and 24,000 events (Schuh et al., 2013a).
Follow up work to this has initiated the creation of event-specific
datasets of similar fashion over the entirety of the SDO mission
(Schuh and Angryk, 2014).

One new and exciting use of these datasets is the discovery
of spatiotemporal frequent patterns. Given solar event instances
as 2D polygonal regions that continuously evolve in shape, size,
and location over time, we can try to discover patterns in the
types of solar events that typically co-occur together in space and
time. Identifying spatiotemporal co-occurrence patterns on the
Sun can help us better understand the relationships between solar
phenomena and contribute real-world insights to the science of
solar physics. By discovering and quantifying patterns of events,
such as the likelihood of common pre-cursors and lead-up times,
we can facilitate better modeling and forecasting of important
space weather events such as coronal mass ejections and solar
flares, which impact radiation in space and can reduce the safety of
space and air travel, disrupt worldwide communications and GPS,
and damage power grids (Langhof and Straume, 2011).

In Fig. 6, we show an abstract example of event instances evolv-
ing over time which correspond to specific types of events. For ex-
ample, we can see that event type e2 always occurs with event
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Fig. 7. (a) An example of k-means clustering (right) on the mean image parameter (P2 in Fig. 3, with k = 8), corresponding to original AIA images on the left (from top: 94,
131, and 211 Å). (b) Region masks from pixel-based intensity clustering (right) corresponding to original AIA images on the left (from top: 94, 131, and 171 Å).
type e1, but not vice versa. Motivated by this challenging task and
the potential uses (well beyond solar data), we developed a novel
framework formining region-based spatiotemporal co-occurrence
patterns and rules (Pillai et al., 2012, 2014, 2013). In our frame-
work, instances of event types are modeled as 3D spatiotemporal
objects, and we developed a set of measures to assess the strength
of spatiotemporal co-occurrence between instances of different
event types. Therefore, given a set of associated events, we can es-
timate the likelihood of seeing another type of event in the near
future. For example, the likelihood of a solar flare occurring in a re-
gion of the Sun is higher if an active region is present, and higher
still if a sigmoid also exists. Furthermore, to benchmark our al-
gorithms we developed a synthetic dataset generator that can be
used to validate and verify the frequent patternmining framework
(Aydin et al., 2014).

3.3. The many uses of clustering

With the need to reduce our massive amounts of data for ef-
fective search and retrieval without the use of data labels, we an-
alyzed the practical effectiveness of clustering algorithms on the
image parameter values. With our clustering approach we expect
to be able to do two things. First, determine if we can find clustered
regions of interest (ROIs) that match sample event labels so we can
extrapolate this knowledge to new data and use it to prune away
large amounts of cells. Second, to be able to identify and track ROIs
related to events that are reported at a courser time granularity
than our metadata. For example, active regions and coronal holes
are typically reported to the HEK every four hours (with their exact
locations), but the MSU trainable module runs at a six minute ca-
dence on the SDO AIA images. Therefore, it would be ideal tomain-
tain accurately tracked events in between specific event reports.

Given our ten extracted image parameters, we explored the use
of k-means clustering on each individual parameter and visualized
the resulting clusters as discretized 64 × 64 pixel image plots.
In our preliminary work, we tested from 4 to 100 clusters with a
subjective determination that 8 was the best number of clusters
to appropriately distinguish different ROIs. In Fig. 7(a), we show
an example of clustered results (right column) corresponding to
sample AIA images in the left column. Visualization was critical
here to empirically choose the best number of clusters to use. It
also reminded us that ‘‘natural’’ clusters are not always the same as
algorithmic results, which would occasionally group a very bright
regionwith amuch darker region because of the given data and the
random initialization of the k-means algorithm.

A related benefit of clustering is dimensionality reduction. If
we replace our parameter values with the representative cluster
centers, we can reduce our data storage costs dramatically (over
90%). While we would be losing some accuracy, if we have prop-
erly determined the clustering for each AIA wavelength, we would
be able to more efficiently search and store our metadata while
also quickly discretizing all new incoming data. We could also per-
form much faster region/image comparisons using simple logical
operations.

Another clustering direction we explored was pixel-based
intensity clustering to identify ROIs for solar events (labeled from
the HEK) that occur in predominantly brighter regions of the Sun.
We employ an intensity-based seeded region growing technique
(Adams and Bischof, 1994), where pixels of intensity greater than
the 99.5th percentile for the image are selected as the ‘seeds’ of
the regions. The regions are then grown by iteratively adding any
pixels of intensity above the 80th percentile of the image that are
8-way adjacent to the region, and terminating when no new pixels
are added. A radial filter is applied to the image, eliminating all
pixels that are not within a fixed distance of the image center (i.e.,
the Sun’s radius). An example of this for several AIA channels is
shown in Fig. 7(b).

This gives us a simple, but quite effective,way of capturing areas
of the Sun likely to contain ‘‘active’’ solar phenomena such as: ac-
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Fig. 8. Intensity-based clusters from multiple passbands (94, 131, 171, and 211 Å)
with outlined HEK events, where areas closer to white are covered by more masks.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

tive regions, sigmoids, and flares. Over a three day test period from
January 20–23, 2012, we compared the reported event boundaries
to the cells in the wavelength the event was reported, and found
over 95% of the reported area of flares, and over 99% of the reported
area of the other events captured by our mask. To visualize this
technique and empirically verify our statistical results, we display
the overlapped intensity regions for several SDO AIA wavelengths,
where multiple overlapping masks result in color closer to white.
Then, by plotting the outlines of the HEK events on such a masked
image, we can easily see that the results of the algorithm make
practical sense (Benkhalil et al., 2006) to the human observer, as
shown in Fig. 8.
One of the major reasons for our grid-based image representa-
tion is that when the users query our CBIR system, they will most
likely not be submitting a full-sized SDO image, but rather a small
section they are interested in querying. When it comes to extrap-
olating the size of a region of a provided image to our full-scale
image representation, we have to be able to aggregate our cell val-
ues in order to provide a better comparison between the query data
and the image data stored on our servers.

We explored the aggregation of our cell image parameters
via various image interpolation techniques (Bicubic interpolation,
Bilinear interpolation, Lanczos resampling, etc.) applied directly on
our parameter values. Using these techniques, we can interpolate
down two ‘‘square sizes’’ without losing important details of our
data, i.e., going from a 64× 64 grid down to a 32× 32 grid and for
some uses all the way down to a 16 × 16 grid. We have also been
able to upscale data from a 32 × 32 grid to a 64 × 64 grid with
few issues. An example of down-scaled parameter plots is shown
in Fig. 9, along with the true parameter values extracted from both
grid sizes for visual comparison.

One of the biggest practical uses of this up-scaling and down-
scaling is thatwe can search for important regions/events in differ-
ent sizes, allowing our CBIR system to be more robust and capable
of finding similarity at different scales, not just basic one-to-one
matches like most systems provide when using textural image pa-
rameters.

4. Content-based image retrieval

With the SDO image repository growing at a rate of over 70,000
images per day and other solar physics tools like the HEK and
Helioviewer only capable of querying the repository for related
(not similar) solar events, there exists an intrinsic need for a system
being able to query such a massive repository for similar images
(based on content), rather than similar events (based on metadata
characteristics). Being able to search through the SDO repository
using a particular image will provide users the ability to discover
related events by finding similar images that occur at different
points in time, allowing for a completely differentway of searching
through solar data and considerably increasing the efficiency of
finding visually similar solar events over time.

The purpose of CBIR systems is to analyze and retrieve images
based on similarity of their contents. In our case, the contents are
Fig. 9. An example of parameter value scaling from a 64 × 64 to a 32 × 32 grid.
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Fig. 10. Four examples of whole-image similarity matrix plots over three days from Jan 20–23, 2012. Each has a unique combination of AIA passband, extracted image
parameter, and metric distance function: 94 Å, P2, Euclidean (top-left); 131 Å, P8, Chebyshev (top-right); 193 Å, P8, cosine (bottom-left); and 171 Å, P9, Chebyshev (bottom-
right). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
described by the 64 × 64 grid of cells of image parameters ex-
plained previously. Historically, CBIR systems have facilitated gen-
eral purpose image retrieval tasks like Photobook (Pentland et al.,
1996), Candid (Ogle and Stonebraker, 1995), Chabot (Kelly et al.,
1995), and QBIC (Flickner et al., 1995) from IBM. These systems
rely on content extracted from images, such as shape, color, or tex-
ture tomatch complete similar images. Newer developments in the
CBIR field explore fuzzy-matching (Piedra-Fernández et al., 2014),
binning-strategies (Kamel et al., 2013), boosting methods (Kumar
and Kumaraswamy, 2013), as well as more integrated tools (Hare
et al., 2011). All these systems focus onusing complete-image simi-
larity as a basis for the retrieval, which translates to comparing the
similarity of complete full-disk SDO AIA images, and is therefore
our starting point as well.

In order to provide solar scientists, computer scientists, student
researchers, other interested members of the community with
the ability to query the entire SDO image repository, we have
developed the SDO CBIR system, the first-ever of its kind for solar
physics. Thanks to NASA’s freedom of information policies, which
dictate that all science products from the SDOmission (and others)
must be publicly available and accessible, we have put special
emphasis in providing access to all our back-end metadata in a
variety of forms, from the many visualizations described in this
paper, to full access of our image parameter metadata through a
future API release. We also provide a bridge linking to other solar
science tools, facilitating easier access to other data and metadata
products over the same time frame being explored.

Science CBIR systems are very domain specific and have only a
small subset of researchers that use them. Take for example med-
ical CBIR systems (Müller et al., 2004) used for aiding in the detec-
tion of cancer and related tasks that are performed by a very select
group of individuals. We are presented with the unique opportu-
nity of creating a system that is targeted for use by both the science
community and a broader set of userswith little to no science back-
ground. Our CBIR system has been available for public use since
the summer of 2013 (Schuh et al., 2013b), and can be accessed at:
http://cbsir.cs.montana.edu/sdocbir/. In the following paragraphs
we discuss several key points of development, which specifically
emphasize visualization, leading to the current state of our SDO
CBIR system.

4.1. Similarity plots

The first hurdle our system encountered was that because of
such a fast cadence of images, we have high-similarity between
temporally adjacent images. Returning themost similar image is an
intrinsic characteristic of a properly functioning CBIR system, but
our domain-specific problem of too many similar images makes
this characteristic a less desired effect. In preliminary analyses, we
proposed some insights into mitigating this general issue within
the system (Banda et al., 2014b), and a fully-fledged production
system can also include simple date/time search filters to supple-
ment the underlying CBIR system mechanisms.

By visualizing full-disk (complete image) similarity plots of im-
ages over time, such as the examples in Fig. 10, we can get a clear
idea of just how similar temporal neighborhoods of images can be.
These plots are created by taking a time-series of images (in this
case over 800 sequential images at our six minute cadence), and

http://cbsir.cs.montana.edu/sdocbir/
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Fig. 11. The basic query interface for our SDO CBIR system.
comparing the distance (similarity) of each image representation
to every other image representation in a 2D matrix setup, where
values are normalized from 0.0 (dark blue) to 1.0 (bright red). Each
plot uses images from a single SDO AIA channel and similarity is
calculated using a chosen distance metric on a single image pa-
rameter for the entire image (4096 values). A quite interesting dis-
covery while analyzing these plots is that we can actually identify
the occurrence of solar phenomena which greatly disrupt the oth-
erwise reasonably deterministic range of highly time-dependent
similarity. In Fig. 10, a large flare occurs near the end (right-side)
of the specific time range shown.

4.2. User interface

As themain component of our system, our retrieval mechanism
is designed to provide the top nine query results on the first
screen, and provides tabs for users to browse (or export) up to 25
additional pages of results. This provides users with enough initial
results to find relevant images for their query as well as the ability
to refine their results by re-querying using returned images. By
also supporting user accounts, we allow people to store their query
sessions to return later, aswell as share specific ‘‘query states’’ with
other users so they can get back to the same query with the simple
share of a web link. Fig. 11 shows the results of an example query
within our system.

Visualization is vital for researchers to truly understand the
benefits of our image parameters and applied CBIR system. Fig. 3
showed how we are representing the image ‘‘content’’ via sta-
tistical image parameters. Such visualizations are also available
to users to fully observe how our system works and what is
matching the most on returned images. We have designed a
web-interface that is similar to other tools used by solar physi-
cists in order to provide them with a familiar environment they
can use anywhere with an Internet connection. As a product of
the ImageFARMER framework (Banda et al., 2013a) (available at
http://www.imagefarmer.org/), the Web-UI plugin was developed
in parallel to this system. This web-based front-end allows the
user to access dynamically generated on-demand parameter his-
tograms and heatmap plots from any image in the system. Another
visualization offered online and not yet discussed is a straight-
forward but quite helpful time-series plot for a given query region,
time interval, and image parameter, as shown in Fig. 12. All these
data products are available in a convenient overlay using CSS and
AJAXwith a PHP/Python backend allowing our web-based applica-
tion to be user friendly, aesthetically pleasing, and as powerful as
a regular desktop application.

4.3. Advances

Thus far our approaches have only begun to scratch the surface
of what is possible, and we are still bridging the gaps between
the data mining, information retrieval, and image processing
communities of computer science and the data-rich field of solar
physics. As pioneering computer scientists, our current SDO CBIR
system is only the first (albeit major) step towards our future plans
to create a comprehensive solar CBIR system that will be able to
search across all available (and future) solar image repositories.
This task will force us to tackle difficult research problems with
novel solutions surrounding user-defined region-based querying
over large-scale and disparate sources of solar image data.

Since the release of the first version of our CBIR system, we
have continuedworking on expanding its features and capabilities.
Our primary objective is the addition of region-based querying ca-
pabilities to the existing codebase, with some preliminary results
already published (Banda et al., 2013b; Banda and Angryk, 2014)
using our recently released large-scale multi-event solar dataset
(Schuh et al., 2013a; Schuh and Angryk, 2014) previously men-
tioned. We have also turned our focus to new Big Data technolo-
gies to scale our system over longer time spans with more optimal
retrieval performance as we proposed on Banda et al. (2014a). Fi-
nally, we are aiming at providing an all-purpose API for researchers
to access our CBIR system data products and results in the coming
months.

5. Conclusion

This paper has presented an overview of some of our recent
works in solar physics data mining where an emphasis on visu-
alization has dramatically aided the understanding and presenta-
tion of data, metadata, and results. Our datamining lab atMontana

http://www.imagefarmer.org/
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Fig. 12. An example time-series plot overlay within the CBIR system.
State University continues to advance interdisciplinary work with
solar physicists to provide useful tools for scientists and the public
at-large interested in solar data.

Through this work we have identified and begun investigating
interesting and practical research questions in many topics of data
mining, such as: data labeling, classification, clustering, frequent
pattern mining, high-dimensional indexing, similarity search, and
content-based image retrieval.We are pleased to play a pioneering
role in large-scale data mining in solar physics and expect many
fellow computer scientists to join the efforts in the coming years.
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