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Abstract. Finding the similarity between paths is an important problem that
comes up in many areas such as 3D modeling, GIS applications, ordering, and
reachability. Given a set of points S, a polygonal curve P, and an ¢ > 0, the
discrete set-chain matching problem is to find another polygonal curve () such
that the nodes of @ are points in S and dr (P, Q) < ¢. Here, dr is the discrete
Fréchet distance between the two polygonal curves. For the first time we study
the set-chain matching problem based on the discrete Fréchet distance rather than
the continuous Fréchet distance. We further extend the problem based on unique
or non-unique nodes and on limiting the number of points used. We prove that
three of the variations of the set-chain matching problem are NP-complete. For
the version of the problem that we prove is polynomial, we give the optimal sub-
structure and the recurrence for a dynamic programming solution.

1 Introduction

Matching geometric objects and finding paths through designated points are common
problems in many areas of research such as pattern matching, computer vision, map
routing, protein structure alignment, ordering, etc. Some of these path problems are
fundamental, and are used to define complexity classes and completeness. A problem
closely related to our study here is map matching where the goal is to find a path through
an embedded graph that minimizes the distance from a given polygonal curve [4]. This
has several useful applications, as mentioned by Alt et al., such as determining the path
of a vehicle on a road network (graph) given noisy approximate GPS data (polygonal
curve). For map matching, the distance measure used is the Fréchet distance.

The Fréchet distance was originally defined by Maurice Fréchet in 1906 as a mea-
sure of similarity between two parametric curves [9]. In the early 1990s, the Fréchet
distance between polygonal curves was studied by Alt and Godau [5] who presented
efficient algorithms and time bounds of O(mn log mn), where m, n are the number of
vertices in the polygonal curves. Following in 1994 Eiter and Mannila [7] defined the
discrete Fréchet distance as an approximate solution to the Fréchet distance based on
polygonal curves where only the nodes are taken into consideration.

With the continuous Fréchet distance, the time complexity of map matching on a
complete graph was further improved upon in [12] where a new problem was introduced-
which we will call set-chain matching (it was unnamed in this work). Given a polygonal
curve P, a set of points S, and a maximum distance € > 0, the problem is to find another
polygonal curve, @, through the set of points such that the Fréchet distance between the
new curve and the original are within an allowed distance, d=(P, Q) < e.
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Figure 1. An instance of the set-chain matching problem in 2D with one solution of £ > 11.

Beyond the original work, we investigate many variations. We look at the com-
plexity of set-chain matching based on the discrete Fréchet distance, and although the
original definition allowed points in the set to be reused in the path, we now consider
both unique and non-unique points. We show that the unique point versions are NP-
complete, and the non-unique point versions are NP-complete when restricting the size
of the set of points used, but polynomial when limiting the size of the path. Figure 1
shows a simple instance of the set-chain matching problem, which is formally defined
at the beginning of Section 3.

The variations of discrete set-chain matching have many applications. Suppose we
have intermittent lossy GPS vehicle data where we can not guarantee the path of the
vehicle between our data points. We can find the shortest (and arguably the most plau-
sible) path of the vehicle based on the discrete Fréchet distance. If the points in our set
represent signal towers (cellular, radio, etc.), which generally have a spherical range,
then we can also consider several coverage problems. Assuming we know the path of a
vehicle, what is the minimum number of towers needed to ensure that the signal is not
lost. Simply knowing whether the path is covered is important, but optimizing it along
multiple roads and areas is crucial. These types of problems are studied in many areas
related to wireless sensor networks, graphics, scheduling, and ordering.

We first provide some background and related work in Section 2. We then cover
the definitions and variations of the discrete set-chain matching problem in Section 3.
Sections 4, 5, and 6 follow with the actual results of the problems. Finally, we conclude
in Section 7 and give some future work related to this research.

2 Background

With respect to map matching, the problem of finding a path in a graph given a polyg-
onal line was first posed by Alt et al. [4] as follows: Let G = (V, E) be an undirected
connected planar graph with a given straight-line embedding in R? and a polygonal line
P, find a path 7 in G which minimizes the Fréchet distance between P and 7. They
give an efficient algorithm which runs in O(pqlog ¢) time and O(pq) space where p
is the number of line segments of P and ¢ is the complexity of G, but it also allowed
vertices and edges to be visited multiple times.

The recent work by Maheshwari et al. improved the running time for the case of
a complete graph [12]. The original algorithm decides the map matching problem in
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O(pk?log k) where k is the number of vertices in the graph, and the new algorithm
solves it in O(pk?). Although they do not specify the name for the problem, we refer
to it as set-chain matching to avoid confusion with other matching problems. Formally,
the set-chain matching problem is defined as: Given a point set S and a polygonal curve
PinR? (d > 2), find a polygonal curve @ with its vertices chosen from S, which has a
minimum Fréchet distance to P. They decide this problem in O(pk?), and also give an
algorithm to find the minimal Fréchet distance in O (pk? log pk).

We originally noted the complexity of discrete set-chain matching with unique
nodes, without the actual proof, in [18]. We not only prove it here, but we also show
that the continuous version of the problem with unique points is NP-complete. This is
a straightforward extension of our earlier work, but the result was simultaneously and
independently proven by Accisano and Ungiir [1] and Shahbaz [15].

A variation of the discrete set-chain matching problem is also related to the discrete
unit disk cover (DUDC) problem when limiting the number of points from S used.
The DUDC problem is known to be NP-Hard, and is also difficult to approximate with
the most recent results being an 18-approximation algorithm [6], a 15-approximation
algorithm [8], and a (9 + ¢)-approximation algorithm [2]. Nearly all of the constant
factor approximations have been within the last decade. The problem does admit a
PTAS [14], but this is infeasible for most instances of the problem. DUDC does not
admit a Fully Polynomial Time Approximation Scheme (FPTAS) unless P=NP.

The discrete Fréchet distance was originally defined by Eiter and Mannila [7] in
1994, and was further expanded on theoretically by Mosig et. al. in 2005 [13]. Given
two polygonal curves, we define the discrete Fréchet distance as follows. We use d(a, b)
to represent the euclidean distance between two points a and b, but it could be replaced
with other distance measures depending on the application.

Definition 1. The discrete Fréchet distance dp between two polygonal curves f : [0, m] —
R* and g : [0,n] — R* is defined as:

dp(f, ) = i
F(f g) o’:[1:m+n]—>[O:rg}}g:[lzm—kn]—)[O:n] s€[l:m+n

max {d(ﬂa(s)), 9(6(8)))}

where o and [3 range over all discrete non-decreasing onto mappings of the form o :
l:m+4+n]—=[0:m),B:[1:m+n]—[0:n].

The continuous Fréchet distance is typically explained as the relationship between
a person and a dog connected by a leash walking along the two curves and trying to
keep the leash as short as possible. However, for the discrete case, we only consider
the nodes of these curves, and thus the man and dog must “hop” along the nodes of
the curves. Consider the scenario in which a person walks along A and a dog along B.
Intuitively, the definition of the paired walk is based on three cases:

1. |B;| > |A;| = 1: the person stays and the dog hops forward;
2. |A;| > |B;| = 1: the person hops forward and the dog stays;
3. |A;| = |Bi| = 1: both the person and the dog hop forward.

By giving a dynamic programming solution for finding the discrete Fréchet distance
between two polygonal curves, Eiter and Mannila proved:
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Theorem 1. The discrete Fréchet distance between two polygonal curves, with m and
n vertices respectively, can be computed in O(mn) time [7].

Figure 2 shows the relationship between the discrete and continuous Fréchet dis-
tances. In Figure 2(a), we have two polygonal curves (or chains) (a1, ag, az) and (b1, ba),
the continuous Fréchet distance between the two is the distance from as to segment
bybo, i.e., d(az,0). The discrete Fréchet distance is d(as, by). The discrete Fréchet dis-
tance could be quite larger than the continuous distance. On the other hand, with enough
sample points on the two curves, the resulting discrete Fréchet distance, i.e., d(a2,b) in
Figure 2(b), closely approximates d(as, 0).
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Figure 2. The relationship between the discrete and continuous Fréchet distance where o is the
continuous and the dotted line between nodes is the discrete. (a) shows a case where the curves
have fewer nodes and a larger discrete Fréchet distance, while (b) is the same basic path with
more nodes, and thus provides a better approximation of the Fréchet distance.

3 Discrete Set-Chain Matching

We begin with the formal definitions of the problem and the variations as well as some
terminology. It is important to note that, as in the continuous version, we make no
requirements that P or ) be planar. For discussion, we will refer to the number of
nodes in a polygonal curve as the “size” of the curve and it will be denoted as | A| for a
polygonal curve A.

Definition 2 (The Discrete Set-Chain Matching Problem).
Instance: Given a point set S, a polygonal curve P in R? (d > 2), an integer K € Z.F,
andan e > 0.

Problem: Does there exist a polygonal curve QQ with vertices chosen from S’ where
S' C S, suchthatT < K and dp(P,Q) < ¢€?

T is defined in two ways. When limiting the number of nodes in the curve, T = |Q)],
and if restricting the number of points used then T' = |S’|. Figure 3 shows an example
demonstrating the difference between minimizing |Q| or |S’|. Here, minimizing |Q|
will always yield |@Q| = 3 regardless of the points chosen. However, minimizing |S’|
will return |S’| = 2 and |@| = 3, which is the only set of points that is minimal.

We look at three variations of discrete set-chain matching. They vary whether there
is a uniqueness constraint on s € S being used as a node in ) (if points may be used
more than once), and whether our goal is to limit the size of the curve @ or the set S".
We distinguish the problems as Unique/Non-unique(U/N) Set-Chain(S) Matching(M)
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Figure3. The difference between minimizing |@Q| and |S’|. Minimizing |S’| gives Q =
(s1,s2,s1) where |S’| = 2 and |Q| = 3, but minimizing |Q| will yield |Q| = 3 whether it
uses the sequence (s1, 2, $1) or {s1, S2, $3).

with a k& Subset/Curve(S/C). The variants are thus NSMS-k, NSMC-k, and USM-k.
When looking at unique nodes, limiting |Q)| is equivalent to limiting the set of points
used, |S’|, since they can only be used once, so we do not separate the cases.

4 Set-Chain Matching with T' = |Q| (NSMC-k)

The original set-chain matching work dealt with the continuous version of NSMC-k.
The discrete version is decidable with a straightforward dynamic programming solu-
tion. We first overview the recurrence relation and algorithm to solve the optimization
version, and show that that NSMC-k exhibits an optimal substructure.

Figure 3 demonstrates that we must find at least one point s; € .S for every p; € P.
The recurrence relation is shown in Equation 1. It assumes a 2D array, M, of size
|S| x | P| where the columns represent the nodes in the polygonal curve P and the rows
represent points in the set S. The initial condition assumes a column zero populated
with 0’s in every row. The recurrence can then be processed column by column until
finished. The final optimal value will be Opt = minLﬂl (M][k, |P]]). This can be solved
in O(mn) time. A straightforward iterative algorithm that implements this method and
solves the optimization version of the problem is easy to construct. The optimal result
is then used to decide NSMC-k.

MTi, ) = min { min}™! (M[k,j — 1) + 1, ifd(si,p;) <e, Mli,j—1=0 (1)
(2)7 if d(8i7pj) >e

Theorem 2 (Optimal Substructure of NSMC-k). Let P = (p1, ..., p,) be a polygonal
chain, and S = {s1, ..., sm } be a set of points such that there exists a Q = {(q1, ..., qx)
through a set S’ C S which is a minimum sequence such that dp (P, Q) < e.

(1) If d(pr-1,qr) < € and d(pn-1,qk—1) > €, then Qy is an optimal solution for
P,_1.

(2) If d(pr—1,qk—1) < &, then Qy_1 is an optimal solution for P, _.

(3)If d(pn—1,qr) > ¢, then Qx—_1 is an optimal solution for P,,_.

Proof. (1) If d(pn,qx) < € and d(p,—_1,qr) < &, then the point g; covers both points
by an e-ball. However, g1 does not cover p,,_1. Thus, @y, is still the optimal solution.
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) If d(pp—1,qK-1) < €, then gy, only covers p,,. If d(p,,, qx—1) < &, then Qx_1 would
be an optimal solution, but by definition ) was minimal so this can not be true. (3) If
d(pn-1,qr) > €, then we have the same argument with p,, only covered by g, and
thus Q1 must be optimal for P,,_1. O

Theorem 3. The discrete non-unique set-chain matching problem where T = |Q)| is
polynomial, i.e., NSMC-k € P.

Proof. Since we have shown that NSMC-£ has an optimal substructure, given P, .S, and
K, we can find an optimal K’ from a dynamic programming algorithm based on the
recurrences (Equation 1). Then we decide NSMC-k by comparing whether K < K’.

5 Set-Chain Matching with T = | S’| (NSMS-k)

The discrete non-unique set-chain matching problem where we limit the number of
points from .S used as nodes in () turns the problem into a coverage issue. This problem
is equivalent to the discrete unit disk cover (DUDC) problem, which is known to be
NP-Hard and is difficult to approximate.

Theorem 4. The discrete non-unique set-chain matching (NSMS-k) problem where
T = |S'| is NP-complete.

Proof. This can be shown via a straightforward reduction from the discrete unit disk
cover (DUDC) problem which is NP-Hard [6]. Formally, we are given a set of points
P and a set of disks D = {D1, D>, ..., D} with centers C' = {¢y, co, ..., ¢y } with all
disks of radius 7.

Now, let P’ be a polygonal curve made of all points in P in any order. Let S = C
and ¢ = 7. Now, 3 a minimum-cardinality subset D’ C D with centers C’ such that
Vpe P,3aD; € D that contains p if and only if 3 a polygonal curve () where the
vertices are from points in S’ C S such that |S’| = |D’| and dp(P’, Q) < e.

We first prove the forward direction. Given an instance I C D that is a minimum
covering for all points in P. We construct P’ by connecting all points in P in any order.
Making a polygonal curve () with the set of centers (Cr) of [ is straightforward. We
construct @ by finding the disk (D;) that covers p; € P’, and we set q; = ¢; where ¢; is
the center of disk D;. Similarly, we walk through each p; € P’ and set the center of the
disk D; € I covering point p; as ¢; = c¢;. Every ordered node in P’ is now still within
¢ of anode in @, thus dp(P’, Q) < €, and the set of nodes used, |S’|, is equal to |I].

In the other direction, if we have a polygonal curve @ = {q1,42,...,qn} such
that the number of unique locations used for vertices is of minimum cardinality and
dr(P',Q) < e. Suppose the set of unique locations S’ that ) is made of is not a
minimal disk cover of all the vertices of P’ viewed as points in a set P. This implies
there exists at least one ¢; that is unnecessary for a covering by C, and there is a point
p; that can be covered by another ;. Let C’ be this smaller covering. Using the same
construction as above we can build a P” and @'. This would mean |C’| < |S’| which
contradicts our assumption that S’ in minimal. Thus, every node p; € P’ is within  of
at least one node ¢; € ), and S’ is a minimum cover.

Finally, we show the problem is in NP. Given an instance I we can check whether
dp(P,I) < e in O(mn) time via Theorem 1. O




Discretely Following a Curve 7

6 Unique Set-Chain Matching (USM-k)

We now address unique set-chain matching where any point from the set can be used
at most once, and show that this problem is NP-complete via a reduction from planar
3-SAT [11]. Planar 3-SAT is any 3-SAT formula that can be drawn as a planar graph
with vertices representing clauses and variables. This is a convenient form of 3-SAT for
geometric reductions since a crossover gadget is unnecessary.

By standard convention, we first introduce several planar “gadgets” that we then
arrange in our reduction. We will build up the gadgets in a piecewise manner, and then
show how they are connected to form a single polygonal curve. Due to the length of this
section, we cover the gadgets and then formally do the reduction with the assumption
of their correctness.

Let ¢ be the 3-SAT formula represented by the input instance of planar 3-SAT
with N variables and M clauses. Given an ¢ > (, we construct a point set S and
a polygonal curve P and let K = |S.| = |S| requiring all points to be used. Here,
S: = {s € S|p € Pand d(p,s) < e} and referred to as the set of reachable points. We
show that ¢ is satisfiable if and only if with our construction there exists a polygonal
curve () with unique nodes from the set S such that dg (P, Q) < ¢,i.e.|Q| = |S| < K.

6.1 Choices and Chains

We first look at the main building block for our gadgets in this reduction, which is
the choice gadget shown in Figure 4(a). There are two ways for a new curve to be
constructed starting at a and using the points {a, b, ¢} in order to “cover” the nodes of
the curve (z,y, z). We label the curve (a, b, ¢) as true, and the curve (a, ¢, b) as false.
This is because the second curve violates our ¢ constraint since d(b, z) > ¢.

S1 s3 54
toopl D3 P4
3
Y s / % s P2
1> / v $ / / |
he H——— % e | Soe

(@) (b) (©)
Figure4. (a) A choice gadget. (b) A chain with a false connection. (c) A variable gadget.

Choice gadgets are linked together to make a chain. Chain gadgets are important
because they force a new curve to stay in a true or false orientation, and therefore
transfer information. An example of a chain with a false curve is shown in Figure 4(b).

6.2 The Variable Gadget

The base of the variable gadget is shown in Figure 4(c). A true setting begins the new
chain as (s, s2, S3, S¢) while a false setting begins (s1, s3, S, 4, S5). The different set-
tings change whether s, is needed to keep dp (P, Q) < e. A true setting does not need
the extra node while the false does. This free node is what is propagated to the clause
gadget. Figure 5 shows the full variable gadget. As is standard in many reductions, each
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variable is repeated some finite length while alternating between x and —z based on
what is needed in the equation.

Figure 5. Variable gadgets linked together for variable x; where x; is set to false (s;, is used)
and thus —x; is true (s;, is free).

Unfortunately, the variable gadget alone will not ensure that the new curve alter-
nates between true and false configurations, which we need for a variable and its com-
plement. Therefore, the variable gadget has a “switch” component, which makes the
free point necessary at every other variable gadget, and thus alternates () between true
and false paths. It is important to note that these switch segments will not be connected
to the variable gadgets within . Note in Figure 5 that the first and last instance of the
variable gadget do not have the full switch component.

For our planar 3-SAT instance, there may be edges which need to connect from the
top and the bottom of the variable gadget. Although an example is not given, this is
possible with our variable gadget. Looking at Figure 5, imagine everything is rotated
in the gadget from s;, to s;, around that vector. This flips the variable and half of the
switch component without changing the reduction, which allow attaching chains onto
the other side of the variable gadget. The following switch component would also have
to be below and then flip back up.

6.3 The Clause

A clause gadget is straightforward. As shown in Figure 6(a), three chains meet within
¢ of each other (c;,, ¢;,, ¢i,), and there are only two points between them. Each chain
is connected at the other end (v;, , v;,, v;,) to variable gadgets. The true or false setting
from the variable is propagated up to the clause gadget and at least one of the chains
must have the new curve in a true position. Only two of the chains can have a false
setting or else one of the end nodes (CY;,) in the clause gadget will not be within ¢ of
any available point, which is equivalent to the clause being false in 3-SAT. Also note
that in the clause gadget, if either point is not needed, they can be used by a true chain
so that all points are used.

The chains from the clause gadgets are attached to the variable gadgets in the high-
lighted area of Figure 6(b). There is one point between the ends of the three chains. A
segment is added from the clause endpoint v, (for clause ¢, where 1 < y < 3) to the
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Figure 6. (a) The clause gadget. (b) The connection point between a variable gadget and a chain
to the clause gadget.

opposite side of the switch component of the variable (or complement) desired, e.g., if
1 is the third variable in the clause ¢, and the connection point is ny, (1) or ny; (—z1),
then a segment is placed connecting the chain vy, to ny, (—1).

6.4 Connecting the Gadgets

Although the polygonal curve P does not have to be planar, it must be a single con-
tinuous curve. Here, we will show that all the gadgets and segments can be connected
to form P. The non-planarity allows us to focus on a single clause gadget to show one
way in which everything can be connected. We have to be careful that we do not con-
nect two nodes that would change the reduction such as connecting two end nodes at a
clause— cg, , ¢k, , Ck, for clause Cy. For simplicity, we can connect all variables together
and all the beginning and end switch points. Let g; = p;, and then connect the variable
gadgets by adding in the edge Dy pr+1, for all variables 1 < k < N — 1, and the last
variable node py, connects to a vertex in C.

Figure 7. Example USM-k clause with three variables C, = (—x1 U z2 U —z3).

We show a simple example of three variables and a clause in Figure 7 without
the connecting segments between gadgets. Let this be clause Cj, and the connected
variables be x1, 2, 3, at nodes n;, or Tt where 1 < ¢ < 3 and let ng; be the end
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node of the curve beginning with ny, (this will be either ny,_, or ny,, ). We are only
concerned about the end nodes of curves connected to the clause gadget. The other
chains will be taken care of separately, including those which we will ignore for now
(the switch component chains n1, to 71, and n3, to n3, in our example).

The end nodes of the curves that need to be connected are ci,, Ck,, Cky, N1, (01, ),
ng,(n2,), n3, (n3, ). These can be connected as a single chain, with every edge longer
than €, by creating the segments 71, ¢k, , 2,13, , and then ¢, and cg, are the end nodes
of the new curve. If we do this for all clauses, then we can connect the clauses with the
segments Cr, Cry1, for 1 <k < M —1.

The only remaining unconnected curves are the switch components that are not tied
to a clause gadget. These can be connected in any order provided the end nodes are not
within ¢, and we do not introduce a loop. This is straightforward by connecting every
other switch component curve (never creating the segments T, 1y, Or Ty, 1y, , for
1 <t < N), and then connecting all the skipped curves.

6.5 The Reduction
Theorem 5. The discrete unique set-chain matching (USM-k) problem is NP-complete.

Proof. We are given a planar 3-SAT instance G, = {V, E'} with vertices V = X UC
such that the vertices represent variables X = {z1,z2,...,2n} and clauses C' =
{C1,Cs,...,Cur}, and the edges E = {ej,ea,...,ez} connect variables to clauses
with the degree of each C; € C being three. Given the planar 3-SAT instance G, we
construct a polygonal curve P and a point set S using an £ > 0 based on the method
described. This construction takes O(|C| + | X| + |E|) for constructing P and S and
is thus polynomial. The sizes of P and S are dependent on ¢ and the metric space. In
general, for any edge e; € E in the space, where ||¢;|| is the length of the edge, there
are [||e;||/¢] points in S and nodes of P used to transfer information along that edge.

We also refer to the 3-SAT equation ¢ derived from G, for the satisfiability of G,.
The planar 3-SAT equation ¢ derived from G, is satisfiable if and only if there exists
a polygonal curve ) with nodes from the set S such that dz (P, Q)) < ¢ and each point
represents a unique node in Q).

In the forward direction, we look at the value of . First, we assume ¢ is satisfiable.
For every clause, there is at least one variable which has a true value. In our construction
this means at least one chain does not need a point from the center of the clause gadget,
and thus we can easily find a @) such that dp (P, Q) < ¢.

If ¢ is unsatisfiable, then there is at least one clause where all three variables have
a false value. This means there is a clause gadget in our construction where all three
chains are in a false setting, and all need a point in the clause gadget center (Figure
6(a)). However, since there are only two points within ¢ of the clause gadget chains (the
points ¢;, , ¢;,, ¢i, for clause gadget C;), one chain must use a point outside the clause
gadget. This causes dp (P, Q) > e.

In the other direction, assume there exists a path @ through S’ C S such that
dr(P,Q) < e. There must be at least one true chain at each clause gadget, and since
the three chains propagate this setting from the variable, we know at least one variable
(or complement) was true. Thus, for every variable attached to a clause, it has the



Discretely Following a Curve 11

correct true or false setting. Therefore, if dr(P, Q) < ¢, then the current assignment
of each variable also satisfies ¢.

If no path @ exists such that dp (P, Q) < ¢, then there is at least one clause gadget
where all three chains had false settings and needed an extra point for ) within the
clause gadget. Since the variable gadgets and switch components always have a path
within €, the problem must occur in a clause. Again, this only happens if all three chains
have a false setting, and similarly to the previous example, these propagated along the
chains from the attachments to the variable gadgets. Thus, there must also exist a clause
in ¢ where all three variables are false.

Last, we know the problem is in NP. Given an instance I we can check whether
dp(P,I) < ein O(mn) time via Theorem 1. O

Our reduction is based on the discrete Fréchet distance, but our construction also
ensures that any resulting path @) is within € of P along the edges as well. Thus, our
reduction can be adapted to prove that USM-£ is also NP-complete for the continuous
Fréchet distance. This result was also recently proven independently and with unique
reductions in [1] and [15]. Due to this result being known and for space concerns, we
only supply the basic outline of the proof.

Corollary 1. The unique set-chain matching (USM-k) problem based on the continu-
ous Fréchet distance is NP-complete.

Proof. This can be proven based on the polygonal curves P and () being constructed
of straight line segments. Given two line segments a = (p1,p2) and b = (p/,ph),
it is straightforward to see that if d(p1,p}) < ¢ and d(p2,p)) < e, then under the
continuous Fréchet distance d z(a,b) < e.

Further, it is known that for any two polygonal curves, d=(P, Q) < dr(P, Q) [7].
Thus, if both P and () are polygonal curves and the problem is NP-complete for the
discrete Fréchet distance within &, it will also hold for the continuous Fréchet distance
within an ¢’ < ¢ and an instance can be verified in O(mn logmn) [5]. ]

7 Conclusion

In this paper we have outlined and extended the discrete set-chain matching problem
and other variations based on restricting our selection to unique nodes, the number of
nodes allowed in the curve, or the number of points to choose from. We proved that
two variations are NP-complete, and the unique point variation is still NP-complete
when based on the continuous Fréchet distance. We proved that the other variation is
polynomial, and gave the recurrences for a dynamic programming implementation. We
conclude with some open problems and further research directions for this work.

(1) What are the complexities based on maximizing the number of vertices in ()?

(2) We can also reverse the problem— if we are given a set size for (), can we
minimize the discrete Fréchet distance between P, Q, i.e., dp (P, Q) < €?

(3) What are the complexities with imprecise input? How difficult is it to find the
minimum and maximum length @ while respecting the discrete Fréchet distance? This
builds off computing the discrete Fréchet distance with imprecise input in general [3].
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(4) What are the approximation bounds for the optimization versions? We know

NSMS-£ is equivalent to DUDC which generally only admits high approximations.
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