
Theoretical Computer Science 556 (2014) 34–44
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Following a curve with the discrete Fréchet distance

Tim Wylie a,∗, Binhai Zhu b

a Department of Computer Science, The University of Alberta, Edmonton, AB T6G-2E8, Canada
b Department of Computer Science, Montana State University, Bozeman, MT 59717-3880, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 February 2014
Received in revised form 7 June 2014
Accepted 18 June 2014
Available online 25 June 2014

Keywords:
Fréchet distance
Set-chain matching
Curve/point-set matching
Polygonal curve
Curve similarity

Finding the similarity between curves is an important problem that comes up in many
areas such as 3D modeling, GIS applications, ordering, and reachability. A related problem
is to find one of the curves given a measure of similarity and another curve. Given a set of
points S , a polygonal curve P , and an ε > 0, the discrete set-chain matching problem is to
find another polygonal curve Q such that the nodes of Q are points in S and dF (P , Q) ≤ ε.
Here, dF is the discrete Fréchet distance between the two polygonal curves. For the first
time we study the set-chain matching problem based on the discrete Fréchet distance
rather than the continuous Fréchet distance. We further extend the problem based on
unique or non-unique nodes and on limiting the number of points used. We prove that
three of the variations of the set-chain matching problem are NP-complete. For the version
of the problem that is polynomial, we give an O(|P ||S|) time greedy solution.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Matching geometric objects and finding curves through designated points are common problems in many areas of re-
search such as pattern matching, computer vision, map routing, protein structure alignment, ordering, etc. Some of these
path problems are fundamental, and are used to define complexity classes and completeness. A problem closely related to
our study here is map matching where the goal is to find a path through an embedded graph that minimizes the distance
from a given polygonal curve [1]. This has several useful applications, as mentioned by Alt et al., such as determining the
path of a vehicle on a road network (graph) given noisy approximate GPS data (polygonal curve). For global map matching,
the distance measure generally used is the Fréchet distance.

The Fréchet distance was originally defined by Maurice Fréchet in 1906 as a measure of similarity between two para-
metric curves [2]. In the early 1990s, the Fréchet distance between polygonal curves was studied by Alt and Godau [3] who
presented efficient algorithms and time bounds of O(mn log mn), where m, n are the number of vertices in the polygonal
curves. Following in 1994, Eiter and Mannila [4] defined the discrete Fréchet distance as an approximate solution to the
Fréchet distance based on polygonal curves where only the nodes are taken into consideration.

With the continuous Fréchet distance, the time complexity of map matching on a complete graph was further improved
upon in [5] where a new problem was introduced, which we will call set-chain matching (it was unnamed in this work).
Given a polygonal curve P , a set of points S , and a maximum distance ε > 0, the problem is to find another polygonal
curve, Q , through the set of points such that the Fréchet distance between the new curve and the original is within an
allowed distance, dF (P , Q) ≤ ε. They further demonstrated some modifications that can be made to their algorithm for

* Corresponding author.
E-mail addresses: twylie@ualberta.ca (T. Wylie), bhz@cs.montana.edu (B. Zhu).
http://dx.doi.org/10.1016/j.tcs.2014.06.026
0304-3975/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2014.06.026
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:twylie@ualberta.ca
mailto:bhz@cs.montana.edu
http://dx.doi.org/10.1016/j.tcs.2014.06.026
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2014.06.026&domain=pdf

T. Wylie, B. Zhu / Theoretical Computer Science 556 (2014) 34–44 35
Fig. 1. An instance of the set-chain matching problem in 2D with one solution for a curve of size 11.

various other questions, but also leave open some important future work. We build upon their main problem by extending
it and analyzing the problems for discrete cases based on the discrete Fréchet distance.

In this work, we investigate many variations of set-chain matching. We look at the complexity of set-chain matching
based on the discrete Fréchet distance, and although the original definition allowed points in the set to be reused in the
chain, we now consider both unique and non-unique points. We show that the unique point versions are NP-complete, and
the non-unique point versions are NP-complete when restricting the size of the set of points used, but polynomial when
limiting the size of the curve (number of nodes). Fig. 1 shows a simple instance of the set-chain matching problem, which
is formally defined at the beginning of Section 3.

The variations of discrete set-chain matching have many applications. Suppose we have intermittent lossy GPS vehicle
data where we cannot guarantee the path of the vehicle between our data points. We can find the shortest (and arguably
the most plausible) path of the vehicle based on the discrete Fréchet distance. Set-chain matching only solves this problem
for the complete graph instance, and requires a different approach for true map matching on a road network (modeled
by an embedded planar graph rather than a set of points). The more applicable problem here is if the points in our set
represent signal towers (cellular, radio, etc.), which generally have a spherical range. This input allows us to consider several
coverage problems. Assuming we know the path of a vehicle (the polygonal curve), what is the minimum number of towers
needed to ensure that the signal is not lost? Knowing whether the path is fully covered is important. Finally, being able
to determine the best ordering of towers to use during the vehicle’s trip may be a necessity. These types of problems are
studied in many areas related to wireless sensor networks, graphics, scheduling, and ordering.

This paper is an extension of a previous conference publication [6] and short abstract [7]. Here, we have expanded
our discussion and explanations considerably. This includes many new and updated illustrations, pseudocode for a greedy
solution, and additional work related to USM. We first provide some background and related work in Section 2. We then
cover the definitions and variations of the discrete set-chain matching problem in Section 3. Sections 4, 5, and 6 follow with
the actual results of the problems. Finally, we conclude in Section 7 and give some future work related to this research.

2. Background

With respect to map matching, the problem of finding a path in a graph given a polygonal line was first posed by Alt
et al. [1] as follows: Let G = (V , E) be an undirected connected planar graph with a given straight-line embedding in R2

and a polygonal line P , find a path π in G which minimizes the Fréchet distance between P and π . They give an efficient
algorithm which runs in O(pq log q) time and O(pq) space where p is the number of line segments of P and q is the
complexity of G , but it also allowed vertices and edges to be visited multiple times.

The recent work by Maheshwari et al. improved the running time for the case of a complete graph [5]. The original
algorithm decides the map matching problem in O(pk2 log k) where k is the number of vertices in the graph, and the
new algorithm solves it in O(pk2). Although they do not specify the name for the problem, we refer to it as set-chain
matching to avoid confusion with other matching problems. Formally, the set-chain matching problem is defined as: Given
a point set S and a polygonal curve P in Rd (d ≥ 2), find a polygonal curve Q with its vertices chosen from S , which has
a minimum Fréchet distance to P . They decide this problem in O(pk2), and also give an algorithm to find the minimal
Fréchet distance in O(pk2 log pk).

We originally noted the complexity of discrete set-chain matching with unique nodes, without the actual proof, in [7].
We not only prove it here, but we also show that the continuous version of the problem with unique points is NP-complete.
This paper is a continuation of our earlier work [6,7,20], but the result based on the continuous Fréchet distance was also
independently proven by Accisano and Üngör [8]. They refer to the problem as Curve/Point-Set Matching (CPSM). Shahbaz
et al. also proved it was NP-complete for non-unique points when trying to visit all nodes under the Fréchet distance [9,10].

The discrete Fréchet distance was originally defined by Eiter and Mannila [4] in 1994, and was further expanded on the-
oretically by Mosig et al. in 2005 [11]. Given two polygonal curves, we define the discrete Fréchet distance in Definition 1.
We use d(a, b) to represent the Euclidean distance between two points a and b, but it could be replaced with other distance
measures depending on the application. Since the discrete Fréchet distance looks at all discrete monotonic parameterizations
over the nodes of the two polygonal curves, each curve must be reparameterized from the number of monotonic combina-
tions (m + n) to the number of nodes in its curve (m or n). The function takes the minimum, among all reparameterizations

36 T. Wylie, B. Zhu / Theoretical Computer Science 556 (2014) 34–44
Fig. 2. The relationship between the discrete and continuous Fréchet distance where o is the continuous and the dotted line between nodes is the discrete.
(a) shows a case where the curves have fewer nodes and a larger discrete Fréchet distance, while (b) is the same basic curve with more nodes, and thus
provides a better approximation of the Fréchet distance.

of the curves (σ and β) from the maximum distance between the nodes σ(s) of f and β(s) of g where s is the parameter
in [1 : m + n].

Definition 1. The discrete Fréchet distance dF between two polygonal curves f : [0, m] → R
k and g : [0, n] → R

k is defined
as:

dF (f , g) = min
σ :[1:m+n]→[0:m],β:[1:m+n]→[0:n] max

s∈[1:m+n]
{

d
(

f
(
σ(s)

)
, g

(
β(s)

))}

where σ and β range over all discrete non-decreasing onto mappings of the form σ : [1 : m + n] → [0 : m], β : [1 : m + n] →
[0 : n].

The continuous Fréchet distance is typically explained as the relationship between a person and a dog connected by a
leash walking along the two curves and trying to keep the leash as short as possible. However, for the discrete case, we
only consider the nodes of these curves, and thus the man and dog must “hop” along the nodes of the curves.

Since the moves taken along the chains are discrete, finding the best walk between the two chains is relatively straight-
forward. By giving a dynamic programming solution for finding the discrete Fréchet distance between two polygonal curves,
in [4] Eiter and Mannila proved that it could be easily solved in O(mn) time. Recently, Agarwal et al. provided the first
subquadratic algorithm for the discrete Fréchet distance giving the following theorem.

Theorem 1. The discrete Fréchet distance between two polygonal curves, with m and n vertices respectively, can be computed in
O(

mn log log n
log n) time [12].

Fig. 2 shows the relationship between the discrete and continuous Fréchet distances. In Fig. 2(a), we have two polygonal
curves (or chains) 〈a1, a2, a3〉 and 〈b1, b2〉, the continuous Fréchet distance between the two is the distance from a2 to
segment b1b2, i.e., d(a2, o). The discrete Fréchet distance is d(a2, b2). The discrete Fréchet distance can be much larger than
the continuous distance. On the other hand, with enough sample points on the two curves, the resulting discrete Fréchet
distance, i.e., d(a2, b) in Fig. 2(b), closely approximates d(a2, o).

3. Discrete set-chain matching

We begin with the formal definitions of the problem and the variations as well as some terminology. It is important to
note that, as in the continuous version, we make no requirements that P or Q be planar. For discussion, we will refer to
the number of nodes in a polygonal curve as the “size” of the curve and it will be denoted as |A| for a polygonal curve A.

Definition 2 (The discrete set-chain matching problem).
Instance: Given a point set S , a polygonal curve P in Rd (d ≥ 2), an integer K ∈ Z

+ , and an ε > 0.
Problem: Does there exist a polygonal curve Q with vertices chosen from S ′ where S ′ ⊆ S , such that T ≤ K and
dF (P , Q) ≤ ε?

T is defined in two ways. When limiting the number of nodes in the curve, T = |Q |, and if restricting the number of
points used then T = |S ′|. Fig. 3 shows an example demonstrating the difference between minimizing |Q | or |S ′|. Here,
minimizing |Q | will always yield |Q | = 3 regardless of the points chosen. However, minimizing |S ′| will return |S ′| = 2 and
|Q | = 3, which is the only set of points that is minimal.

We look at three variations of discrete set-chain matching. They vary whether there is a uniqueness constraint on s ∈ S
being used as a node in Q (if points may be used more than once), and whether our goal is to limit the size of the curve
Q or the set S ′ . We distinguish the problems as Unique/Non-unique(U/N) Set-Chain(S) Matching(M) with Subset/Curve(S/C)
of size K . When looking at unique nodes, limiting |Q | is equivalent to limiting the set of points used, |S ′|, since they can
only be used once, so we do not separate the cases. The variants are as follows:

T. Wylie, B. Zhu / Theoretical Computer Science 556 (2014) 34–44 37
• NSMC: Non-unique Set-Chain Matching with T = |Q | where we want to find a curve Q with up to K nodes. This is
covered is Section 4.

• NSMS: Non-unique Set-Chain Matching with T = |S ′| where we want to find a curve Q that uses up to K points from S .
This is covered is Section 5.

• USM: Unique Set-chain Matching where we want to find a curve with up to K nodes, but the points from S can only
be used once. This is covered is Section 6.

Fig. 3. The difference between minimizing |Q | and |S ′|. Minimizing |S ′| gives Q = 〈s1, s2, s1〉 where |S ′| = 2 and |Q | = 3, but minimizing |Q | will yield
|Q | = 3 whether it uses the sequence 〈s1, s2, s1〉 or 〈s1, s2, s3〉.

4. Set-chain matching with T = | Q | (NSMC)

The original set-chain matching work dealt with the continuous version of NSMC. The discrete version is decidable by
first solving the optimization version with a straightforward greedy solution. We overview the greedy implementation and
the complexity of NSMC, and then give the pseudocode.

Fig. 3 demonstrates that we must find at least one point si ∈ S for every p j ∈ P . First find the s ∈ S that covers the
longest prefix of P , i.e., the longest consecutive subchain starting with p1. Then add s to the optimal set and remove all
the nodes of the prefix of P that it covers. Since the nodes in Q do not have to be unique, we keep s in our set of
possible new nodes. Then repeat using the remaining subset of S and subchain of P . Algorithm 1 gives the pseudocode
for a straightforward implementation of the greedy method. This solution only uses O(|S|) space, and has a running time
of O(|P ||S|).

Theorem 2. The discrete non-unique set-chain matching problem where T = |Q | is polynomial, i.e., NSMC ∈ P.

Proof. Since we can solve the optimization version of NSMC, given P , S , and K , we can find an optimal K ′ , and decide
NSMC by comparing whether K ≤ K ′ . �

Algorithm 1 solves the optimization version of NSMC with a greedy approach. As mentioned, we want to cover the
largest prefix possible at each step. Thus, ‘NumCovered’ is an array that stores the current prefix length that each point
covers. ‘PCovered’ keeps track of how many nodes have already been covered in P . Thus, if ‘PCovered’ has the value 5, we

Algorithm 1 GREEDY-NSMC → Return the minimal size of |Q | using a greedy approach.
Input: P is the polygonal curve, S is the set of points, and ε is our distance threshold.
Output: The minimum |Q | for a curve through the points in S such that dF (P , Q) ≤ ε.

1: function GREEDY-NSMC (P , S , ε)
2: NumCovered ← |S| � The prefix covered by each s ∈ S
3: PCovered ← 0 � The number of nodes of P already covered
4: Total ← 0 � The number of nodes of Q
5: while PCovered < |P | do � If there are nodes left to cover
6: for i ← 1, |S| do � Loop over S
7: NumCovered[i] ← 0
8: j ← PCovered +1
9: while d(si , p j) ≤ ε do � Count the number covered by si

10: NumCovered[i] ← NumCovered[i] + 1
11: j ← j + 1

12: if max(NumCovered) > 0 then � If the prefix covered is positive
13: PCovered ← PCovered + max(NumCovered) � Get the biggest prefix
14: Total ← Total +1
15: else � If the current p j is not covered by any s ∈ S
16: PCovered ← |P |
17: Total ← 0 � Return 0 since there is no feasible solution
18: return Total

38 T. Wylie, B. Zhu / Theoretical Computer Science 556 (2014) 34–44
Fig. 4. An example of the steps in the reduction from the discrete unit disk cover problem. (a) An instance of DUDC. (b) Note the centers of the disks and
connect the points as a polygonal line. (c) The final instance of NSMS.

are only concerned with finding a prefix beginning at p6. Finally, ‘Total’ tracks how many points from S that have been
used, which will become our solution length when finished.

This problem can also be solved less efficiently with dynamic programming, and the recurrence relation is shown in
Eq. (1). It assumes a 2D array, M , of size |S| × |P | where the columns represent the nodes in the polygonal curve P and
the rows represent points in the set S . The initial condition assumes a column zero populated with 0’s in every row. The
recurrence can then be processed column by column until finished. The final optimal value will be Opt = min|S|

k=1(M[k, |P |]).
Using the recurrence naïvely solves the optimization problem in O(|P ||S|2) time. However, the minimum value at the
previous node of P can be saved, the algorithm time can be reduced to O(|P ||S|) time.

M[i, j] = min

⎧⎨
⎩

M[i, j − 1], if d(si, p j) ≤ ε, M[i, j − 1] = 0

min|S|
k=1(M[k, j − 1]) + 1, if d(si, p j) ≤ ε, M[i, j − 1] = 0

0, if d(si, p j) > ε

(1)

5. Set-chain matching with T = |S ′| (NSMS)

The discrete non-unique set-chain matching problem where we limit the number of points from S used as nodes in
Q turns the problem into a coverage issue. This variation of the discrete set-chain matching problem is related to the
discrete unit disk cover (DUDC) problem when limiting the number of points from S used. The DUDC problem is known
to be NP-Hard, and is also difficult to approximate with the most recent results being an 18-approximation algorithm
[13], a 15-approximation algorithm [14], and a (9 + ε)-approximation algorithm [15]. Nearly all of the constant factor
approximations have been within the last decade. The problem does admit a PTAS [16], but this is infeasible for most
instances of the problem with more than two disks. DUDC does not admit a Fully Polynomial Time Approximation Scheme
(FPTAS) unless P = NP.

An instance of the DUDC problem is a set of points in the plane and a set of unit disks that are also in the plane.
The problem is to find the minimum number of disks that cover all of the points. Note that the disks and the points are
stationary and given as input. Fig. 4(a) shows a simple instance of DUDC with seven unit disks to cover fifteen points. The
optimal solution for this example is four of the disks.

Fig. 4 shows a simple example walk-through of how the reduction is constructed. The problems are similar enough that
the reduction is fairly straightforward. Basically, we can treat the centers of the unit disks as the points in our set and turn
all the points from DUDC into the polygonal chain for NSMS. In Fig. 4(b), the centers of the disks have been marked and we
have connected all the points as a polygonal chain in a random order. Fig. 4(c) shows the final instance of NSMS that was
constructed.

Theorem 3. The discrete non-unique set-chain matching (NSMS) problem where T = |S ′| is NP-complete.

Proof. This can be shown via a straightforward reduction from the discrete unit disk cover (DUDC) problem which
is NP-Hard [13]. Formally, we are given a set of points P and a set of disks D = {D1, D2, ..., D N } with centers C =
{c1, c2, ..., cN} with all disks of radius r.

Now, let P ′ be a polygonal curve made of all points in P in any order. Let S = C and ε = r. Now, ∃ a minimum-cardinality
subset D ′ ⊆ D with centers C ′ such that ∀p ∈ P , ∃ a Di ∈ D ′ that contains p if and only if ∃ a polygonal curve Q where the
vertices are from points in S ′ ⊆ S such that |S ′| = |D ′| and dF (P ′, Q) ≤ ε.

We first prove the forward direction. Given an instance I ⊆ D that is a minimum covering for all points in P . We
construct P ′ by connecting all points in P in any order. Making a polygonal curve Q with the set of centers (C I) of I is
straightforward. We construct Q by finding the disk (Di) that covers p1 ∈ P ′ , and we set q1 = ci where ci is the center of
disk Di . Similarly, we walk through each pi ∈ P ′ and set the center of the disk D j ∈ I covering point pi as qi = c j . Every
ordered node in P ′ is now still within ε of a node in Q , thus dF (P ′, Q) ≤ ε, and the set of nodes used, |S ′|, is equal to |I|.

In the other direction, if we have a polygonal curve Q = {q1, q2, . . . , qN} such that the number of unique locations used
for vertices is of minimum cardinality and dF (P ′, Q) ≤ ε. Suppose the set of unique locations S ′ that Q is made of is

T. Wylie, B. Zhu / Theoretical Computer Science 556 (2014) 34–44 39
Fig. 5. A simple planar 3-SAT example where clauses are represented by rectangles and variables by circles. Here, there are four clauses and five variables.

Fig. 6. (a) A choice gadget. (b) A chain with a false connection.

not a minimal disk cover of all the vertices of P ′ viewed as points in a set P . This implies there exists at least one qi
that is unnecessary for a covering by C , and there is a point p j that can be covered by another ck . Let C ′ be this smaller
covering. Using the same construction as above we can build a P ′′ and Q ′ . This would mean |C ′| < |S ′| which contradicts
our assumption that S ′ in minimal. Thus, every node pi ∈ P ′ is within ε of at least one node q j ∈ Q , and S ′ is a minimum
cover.

Finally, we show the problem is in NP. Given an instance I we can check whether dF (P , I) ≤ ε in polynomial time via
Theorem 1. �

Since NSMS is so closely related to DUDC, any of the approximations for DUDC can be adapted. The basic greedy heuristic
will only give an O(log n) approximation. This method selects the point s ∈ S that covers the most nodes of P , and then
removes those nodes since they are covered. The method is repeated until all nodes are covered and the set of points chosen
from S can be ordered in any way to be the polygonal curve Q .

6. Unique set-chain matching (USM)

We now address unique set-chain matching where any point from the set can be used at most once, and show that this
problem is NP-complete via a reduction from planar 3-SAT [17]. Planar 3-SAT is any 3-SAT formula that can be drawn as a
planar graph with vertices representing clauses and variables. This is a convenient form of 3-SAT for geometric reductions
since a crossover gadget is unnecessary [21,22]. Planar 3-SAT is still NP-complete even when all variables are aligned along
a single line and all variables and clauses can be contained within a given rectilinear embedding [18]. The input is a planar
graph with vertex labels to indicate which vertices are clauses and which are variables. Thus, for our reduction we must
handle the standard 3-SAT inputs (the vertices), and the additional elements of a graph, i.e., the edges which imply inclusion.

Fig. 5 shows a simple planar 3-SAT example with five variables and four clauses. The clauses are represented by rect-
angles and the variables by circles. Note that the edge between a variable and a clause defines inclusion, but does not
immediately show whether the variable or its complement is included. This can be represented by various methods such as
multiple vertices or “splitting” the vertex in half.

By standard convention, we first introduce several planar “gadgets” that we then arrange in our reduction. We will build
up the gadgets in a piecewise manner, and then show how they are connected to form a single polygonal curve. Due to the
length of this section, we cover the gadgets and then formally do the reduction with the assumption of their correctness.

Let ϕ be the 3-SAT formula represented by the input instance of planar 3-SAT with N variables and M clauses. Given
an ε > 0, we construct a point set S and a polygonal curve P and let K = |Sε| = |S| requiring all points to be used. Here,
Sε = {s ∈ S | p ∈ P and d(p, s) ≤ ε} and referred to as the set of reachable points. We show that ϕ is satisfiable if and only
if with our construction there exists a polygonal curve Q with unique nodes from the set S such that dF (P , Q) ≤ ε, i.e.
|Q | = |S| ≤ K .

6.1. Choices and chains

We first look at the main building block for our gadgets in this reduction, which is the choice gadget shown in Fig. 6(a).
There are two ways for a new curve to be constructed starting at a and using the points {a, b, c} in order to “cover” the
nodes of the curve 〈x, y, z〉. We label the curve 〈a, b, c〉 as true, and the curve 〈a, c, b〉 as false. This is because the second
curve violates our ε constraint since d(b, z) > ε.

40 T. Wylie, B. Zhu / Theoretical Computer Science 556 (2014) 34–44
Fig. 7. The base of the variable gadget.

Fig. 8. Variable gadgets linked together for variable xi where xi is set to false (si4 is used) and thus ¬xi is true (si7 is free).

Fig. 9. A variable gadget showing how a chain for a clause gadget can attach on the bottom of the variable gadget. The variable and switch gadgets can
“flip” any number of times as needed.

Choice gadgets are linked together to make a chain. Chain gadgets are important because they force a new curve to stay
in a true or false orientation, and therefore transfer information. An example of a chain with a false curve is shown in
Fig. 6(b).

6.2. The variable gadget

The base of the variable gadget is shown in Fig. 7. A true setting begins the new chain as 〈s1, s2, s3, s6〉 while a false
setting begins 〈s1, s3, s2, s4, s5〉. The different settings change whether s4 is needed to keep dF (P , Q) ≤ ε. A true setting
does not need the extra node while the false does. This free node is what is propagated to the clause gadget. Fig. 8 shows
the full variable gadget. As is standard in many reductions, each variable is repeated some finite length while alternating
between x and ¬x based on what is needed in the equation.

Unfortunately, the variable gadget alone will not ensure that the new curve alternates between true and false configu-
rations, which we need for a variable and its complement. Therefore, the variable gadget has a “switch” component, which
makes the free point necessary at every other variable gadget, and thus alternates Q between true and false paths. It is
important to note that these switch segments will not be connected to the variable gadgets within ε. Note in Fig. 8 that the
first and last instance of the variable gadget do not have the full switch component.

For our planar 3-SAT instance, there may be edges which need to connect from the top and the bottom of the variable
gadget. The gadget must be able to handle any planar edges. Looking at Fig. 8, imagine everything is rotated in the gadget
from si7 to siE around that vector. This flips the variable and half of the switch component without changing the reduction,
which allow attaching chains onto the other side of the variable gadget. The following switch component would also have
to be below and then flip back up. Fig. 9 shows this rotation and the flip back to the standard layout. This can be done as
often as needed for the connections to the variable.

T. Wylie, B. Zhu / Theoretical Computer Science 556 (2014) 34–44 41
Fig. 10. (a) The clause gadget. (b) The connection point between a variable gadget and a chain to the clause gadget.

6.3. The clause gadget

A clause gadget is straightforward. As shown in Fig. 10(a), three chains meet within ε of each other (ci1 , ci2 , ci3), and
there are only two points between them. Each chain is connected at the other end (vi1 , vi2 , vi3) to variable gadgets. The
true or false setting from the variable is propagated up to the clause gadget and at least one of the chains must have the
new curve in a true position. Only two of the chains can have a false setting or else one of the end nodes (Cki) in the
clause gadget will not be within ε of any available point, which is equivalent to the clause being false in 3-SAT. Also note
that in the clause gadget, if either point is not needed, they can be used by a true chain so that all points are used.

The chains from the clause gadgets are attached to the variable gadgets in the highlighted area of Fig. 10(b). There is
one point between the ends of the three chains. A segment is added from the clause endpoint vky (for clause ck where
1 ≤ y ≤ 3) to the opposite side of the switch component of the variable (or complement) desired, e.g., if x1 is the third
variable in the clause ck and the connection point is n1i (x1) or n1 j (¬x1), then a segment is placed connecting the chain vk3

to n1 j (¬x1).

6.4. Connecting the gadgets

Although the polygonal curve P does not have to be planar, it must be a single continuous curve. Here, we will show
that all the gadgets and segments can be connected to form P . The non-planarity allows us to focus on a single clause
gadget to show one way in which everything can be connected. We have to be careful that we do not connect two nodes
that would change the reduction such as connecting two end nodes at a clause – ck1 , ck2 , ck3 for clause Ck . For simplicity, we
can connect all variables together and all the beginning and end switch points. Let q1 = p11 and then connect the variable
gadgets by adding in the edge pkF pk+11 for all variables 1 ≤ k ≤ N − 1, and the last variable node pN F connects to a vertex
in C1.

We show a simple example of three variables and a clause in Fig. 11 without the connecting segments between gadgets.
Let this be clause Ck , and the connected variables be x1, x2, x3, at nodes nti or nt j where 1 ≤ t ≤ 3 and let nt j be the end
node of the curve beginning with nti (this will be either nti−1 or nti+1). We are only concerned about the end nodes of
curves connected to the clause gadget. The other chains will be taken care of separately, including those which we will
ignore for now (the switch component chains n13 to n14 and n33 to n34 in our example).

The end nodes of the curves that need to be connected are ck1 , ck2 , ck3 , n1 j (n11), n2i (n24), n3 j (n31). These can be con-
nected as a single chain, with every edge longer than ε, by creating the segments n1 j ck2 ,n2i n3 j , and then ck1 and ck3 are
the end nodes of the new curve. If we do this for all clauses, then we can connect the clauses with the segments ck3 ck+11

for 1 ≤ k ≤ M − 1.
The only remaining unconnected curves are the switch components that are not tied to a clause gadget. These can be

connected in any order provided the end nodes are not within ε, and we do not introduce a loop. This is straightforward
by connecting every other switch component curve (never creating the segments nti−1nti or nti nti+1 for 1 ≤ t ≤ N), and then
connecting all the skipped curves.

Fig. 12 shows the example from Fig. 11 with the connections and assignments x1 = 1, x2 = 0, and x3 = 0. Our assign-
ments allow the clause to be satisfiable. The example is one continuous polygonal curve P from the start of x1 to the end
at the clause gadget from the x3 chain (the node ck3). If we had set x3 = 1 notice that our Q would not have had a point
to use within ε of ck .
3

42 T. Wylie, B. Zhu / Theoretical Computer Science 556 (2014) 34–44
Fig. 11. Example USM clause with three variables Ck = (¬x1 ∨ x2 ∨ ¬x3) without the connections shown between gadgets.

Fig. 12. Example USM clause with three variables Ck = (¬x1 ∨ x2 ∨ ¬x3) with assignments x1 = 1, x2 = 0, and x3 = 0.

6.5. The reduction

Now that we have covered the construction in detail and how it retains the properties of a planar 3-SAT instance, we
can prove the complexity of USM. Following, we also look at the complexity based on the continuous Fréchet distance.

Theorem 4. The discrete unique set-chain matching (USM) problem is NP-complete.

Proof. We are given a planar 3-SAT instance Gϕ = {V , E} with vertices V = X ∪ C such that the vertices represent variables
X = {x1, x2, . . . , xN } and clauses C = {C1, C2, ..., CM}, and the edges E = {e1, e2, . . . , e Z } connect variables to clauses with the
degree of each Ci ∈ C being three. Given the planar 3-SAT instance Gϕ , we construct a polygonal curve P and a point set
S using an ε > 0 based on the method described. This construction takes O(|C | + |X | + |E|) for constructing P and S and
is thus polynomial. The sizes of P and S are dependent on ε and the metric space. In general, for any edge ei ∈ E in the
space, where ‖ei‖ is the length of the edge, there are �‖ei‖/ε� points in S and nodes of P used to transfer information
along that edge.

We also refer to the 3-SAT equation ϕ derived from Gϕ for the satisfiability of Gϕ . The planar 3-SAT equation ϕ derived
from Gϕ is satisfiable if and only if there exists a polygonal curve Q with nodes from the set S such that dF (P , Q) ≤ ε and
each point represents a unique node in Q .

In the forward direction, we look at the value of ϕ . First, we assume ϕ is satisfiable. For every clause, there is at least
one variable which has a true value. In our construction this means at least one chain does not need a point from the
center of the clause gadget, and thus we can easily find a Q such that dF (P , Q) ≤ ε.

T. Wylie, B. Zhu / Theoretical Computer Science 556 (2014) 34–44 43
If ϕ is unsatisfiable, then there is at least one clause where all three variables have a false value. This means there is
a clause gadget in our construction where all three chains are in a false setting, and all need a point in the clause gadget
center (Fig. 10(a)). However, since there are only two points within ε of the clause gadget chains (the points ci1 , ci2 , ci3 for
clause gadget Ci), one chain must use a point outside the clause gadget. This causes dF (P , Q) > ε.

In the other direction, assume there exists a curve Q through S ′ ⊂ S such that dF (P , Q) ≤ ε. There must be at least one
true chain at each clause gadget, and since the three chains propagate this setting from the variable, we know at least one
variable (or complement) was true. Thus, for every variable attached to a clause, it has the correct true or false setting.
Therefore, if dF (P , Q) ≤ ε, then the current assignment of each variable also satisfies ϕ .

If no curve Q exists such that dF (P , Q) ≤ ε, then there is at least one clause gadget where all three chains had false
settings and needed an extra point for Q within the clause gadget. Since the variable gadgets and switch components
always have a curve within ε, the problem must occur in a clause. Again, this only happens if all three chains have a false
setting, and similarly to the previous example, these propagated along the chains from the attachments to the variable
gadgets. Thus, there must also exist a clause in ϕ where all three variables are false.

Last, we know the problem is in NP. Given an instance I we can check whether dF (P , I) ≤ ε in polynomial time via
Theorem 1. �

Our reduction is based on the discrete Fréchet distance, but our construction also ensures that any resulting curve Q is
within ε of P along the edges as well. Thus, our reduction can be adapted to prove that USM is also NP-complete for the
continuous Fréchet distance. This result was also recently proven independently and with a unique reduction in [8].

Corollary 1. The unique set-chain matching (USM) problem based on the continuous Fréchet distance is NP-complete.

Proof. This can be proven based on the polygonal curves P and Q being constructed of straight line segments. Given two
line segments a = 〈p1, p2〉 and b = 〈p′

1, p
′
2〉, it is straightforward to see that if d(p1, p′

1) ≤ ε and d(p2, p′
2) ≤ ε, then under

the continuous Fréchet distance dF (a, b) ≤ ε. This does not account for instances where multiple nodes are matched with a
single node of the other curve, but it gives an intuitive idea for why it is true.

Formally, it is known that for any two polygonal curves P , Q , the relationship dF (P , Q) ≤ dF (P , Q) holds, where dF
is the Fréchet distance and dF is the discrete Fréchet distance [4]. Thus, if both P and Q are polygonal curves and the
problem is NP-complete for the discrete Fréchet distance within ε, it also holds for the continuous Fréchet distance within
an ε′ ≤ ε. Finally, for polygonal curves in the plane, the continuous Fréchet distance can be calculated in O(mn log mn)

[3]. Thus, given an instance I based on a set S and polygonal curve P , we can verify the answer in polynomial time of
O(|I||P | log |I||P |). �
7. Conclusion

In this paper we have outlined and extended the discrete set-chain matching problem and other variations based on
restricting our selection to unique nodes, the number of nodes allowed in the curve, or the number of points to choose
from. We proved that two variations are NP-complete, and the unique point variation is still NP-complete when based on
the continuous Fréchet distance. We proved that the other variation is polynomial, and gave the algorithm and pseudocode
for solving the optimization version of the problem. We conclude with some open problems and further research directions
for this work.

(1) What are the complexities based on maximizing the number of vertices in Q ?
(2) We can also reverse the problem – if we are given a set size for Q , can we minimize the discrete Fréchet distance

between P , Q , i.e., dF (P , Q) ≤ ε?
(3) What are the complexities with imprecise input? How difficult is it to find the minimum and maximum length Q

while respecting the discrete Fréchet distance? This builds off computing the discrete Fréchet distance with imprecise input
in general [19].

Acknowledgements

We would like to acknowledge all of the reviewers who have helped make this research better. We thank Paul Accisano
for some early reviews related to the reductions. We are also grateful to Guohui Lin for his support during the preparation
of this work.

References

[1] H. Alt, A. Efrat, G. Rote, C. Wenk, Matching planar maps, J. Algorithms 49 (2) (2003) 262–283.
[2] M. Fréchet, Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palermo (1884–1940) 22 (1) (1906) 1–72, http://dx.doi.org/10.1007/BF03018603.
[3] H. Alt, M. Godau, Computing the Fréchet distance between two polygonal curves, Internat. J. Comput. Geom. Appl. 5 (1995) 75–91.
[4] T. Eiter, H. Mannila, Computing discrete Fréchet distance, Technical report CD-TR 94/64, Information Systems Department, Technical University of

Vienna, 1994.

http://refhub.elsevier.com/S0304-3975(14)00462-9/bib416C743A323030333A4A414C4753s1
http://dx.doi.org/10.1007/BF03018603
http://refhub.elsevier.com/S0304-3975(14)00462-9/bib416C743A313939353A4A434F4D5053s1
http://refhub.elsevier.com/S0304-3975(14)00462-9/bib45697465723A313939343A54454348s1
http://refhub.elsevier.com/S0304-3975(14)00462-9/bib45697465723A313939343A54454348s1

44 T. Wylie, B. Zhu / Theoretical Computer Science 556 (2014) 34–44
[5] A. Maheshwari, J.-R. Sack, K. Shahbaz, H. Zarrabi-Zadeh, Staying close to a curve, in: Proceedings of the 23rd Canadian Conference on Computational
Geometry, CCCG’11, 2011, August 10–12, 2011.

[6] T. Wylie, Discretely following a curve, in: The 7th Int. Conf. on Combinatorial Optimization and Applications, COCOA’13, in: Lecture Notes in Comput.
Sci., vol. 8287, 2013, pp. 13–24.

[7] T. Wylie, B. Zhu, Discretely following a curve (short abstract), in: Computational Geometry: Young Researchers Forum, CG:YRF’12, 2012, pp. 33–34.
[8] P. Accisano, A. Üngör, Hardness results on curve/point set matching with Fréchet distance, in: Proc. of the 29th European Workshop on Computational

Geometry, EuroCG’13, 2013, pp. 51–54.
[9] K. Shahbaz, Applied similarity problems using Fréchet distance, Ph.D. thesis, Carleton University, 2013.

[10] A. Maheshwari, J.-R. Sack, K. Shahbaz, Visiting all sites with your dog, CoRR, abs/1211.4559.
[11] A. Mosig, M. Clausen, Approximately matching polygonal curves with respect to the Fréchet distance, Comput. Geom.: Theory Appl. 30 (2) (2005)

113–127.
[12] P.K. Agarwal, R.B. Avraham, H. Kaplan, M. Sharir, Computing the discrete Fréchet distance in subquadratic time, in: Proc. of the 24th Annual ACM–SIAM

Sym. on Discrete Algorithms, SODA’13, SIAM, 2013, pp. 156–167.
[13] G.K. Das, R. Fraser, A. Lòpez-Ortiz, B.G. Nickerson, On the discrete unit disk cover problem, in: Proc. of the 5th Int. Conf. on WALCOM: Algorithms and

Computation, WALCOM’11, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 146–157.
[14] R. Fraser, A. Lòpez-Ortiz, The within-strip discrete unit disk cover problem, in: Proc. of the 24th Canadian Conf. on Computational Geometry, CCCG’12,

2012, pp. 53–58.
[15] R. Acharyya, M. B., G.K. Das, Unit disk cover problem, CoRR, abs/1209.2951.
[16] N.H. Mustafa, S. Ray, Improved results on geometric hitting set problems, Discrete Comput. Geom. 44 (4) (2010) 883–895, http://dx.doi.org/10.1007/

s00454-010-9285-9.
[17] D. Lichtenstein, Planar formulae and their uses, SIAM J. Comput. 11 (2) (1982) 329–343.
[18] D.E. Knuth, A. Raghunathan, The problem of compatible representatives, SIAM J. Discrete Math. 5 (3) (1992) 422–427.
[19] H.-K. Ahn, C. Knauer, M. Scherfenberg, L. Schlipf, A. Vigneron, Computing the discrete Fréchet distance with imprecise input, Internat. J. Comput. Geom.

Appl. 22 (1) (2012) 27–44.
[20] T. Wylie, The discrete Fréchet distance with applications, Ph.D. thesis, Montana State University, 2013.
[21] A. Wolff, A simple proof for the NP-hardness of edge labeling, Technical report W-SPNPH-00, Institut für Mathematik und Informatik, Universität

Greifswald, 2000.
[22] M. Jiang, Map labeling with circles, Ph.D. thesis, Montana State University, 2005.

http://refhub.elsevier.com/S0304-3975(14)00462-9/bib4D6168657368776172693A323031313A43434347s1
http://refhub.elsevier.com/S0304-3975(14)00462-9/bib4D6168657368776172693A323031313A43434347s1
http://refhub.elsevier.com/S0304-3975(14)00462-9/bib57796C69653A323031333A434F434F41s1
http://refhub.elsevier.com/S0304-3975(14)00462-9/bib57796C69653A323031333A434F434F41s1
http://refhub.elsevier.com/S0304-3975(14)00462-9/bib57796C69653A323031323A4347595246s1
http://refhub.elsevier.com/S0304-3975(14)00462-9/bib4163636973616E6F3A323031333A4555524F4347s1
http://refhub.elsevier.com/S0304-3975(14)00462-9/bib4163636973616E6F3A323031333A4555524F4347s1
http://refhub.elsevier.com/S0304-3975(14)00462-9/bib5368616862617A3A323031333A504844s1
http://refhub.elsevier.com/S0304-3975(14)00462-9/bib4D6168657368776172693A323031323A434F5252s1
http://refhub.elsevier.com/S0304-3975(14)00462-9/bib4D6F7369673A323030353A43475441s1
http://refhub.elsevier.com/S0304-3975(14)00462-9/bib4D6F7369673A323030353A43475441s1
http://refhub.elsevier.com/S0304-3975(14)00462-9/bib4167617277616C3A323031333A534F4441s1
http://refhub.elsevier.com/S0304-3975(14)00462-9/bib4167617277616C3A323031333A534F4441s1
http://refhub.elsevier.com/S0304-3975(14)00462-9/bib4461733A323031313A57414C434F4Ds1
http://refhub.elsevier.com/S0304-3975(14)00462-9/bib4461733A323031313A57414C434F4Ds1
http://refhub.elsevier.com/S0304-3975(14)00462-9/bib4672617365723A323031323A43434347s1
http://refhub.elsevier.com/S0304-3975(14)00462-9/bib4672617365723A323031323A43434347s1
http://refhub.elsevier.com/S0304-3975(14)00462-9/bib41636861727979613A323031323A4152584956s1
http://dx.doi.org/10.1007/s00454-010-9285-9
http://refhub.elsevier.com/S0304-3975(14)00462-9/bib4C69636874656E737465696E3A313938323A5349414Ds1
http://refhub.elsevier.com/S0304-3975(14)00462-9/bib4B6E7574683A313939323A534A444Ds1
http://refhub.elsevier.com/S0304-3975(14)00462-9/bib41686E3A323031303A4953414143s1
http://refhub.elsevier.com/S0304-3975(14)00462-9/bib41686E3A323031303A4953414143s1
http://refhub.elsevier.com/S0304-3975(14)00462-9/bib57796C69653A323031333A504844s1
http://refhub.elsevier.com/S0304-3975(14)00462-9/bib576F6C66663A323030303A54454348s1
http://refhub.elsevier.com/S0304-3975(14)00462-9/bib576F6C66663A323030303A54454348s1
http://refhub.elsevier.com/S0304-3975(14)00462-9/bib4A69616E673A323030353A504844s1
http://dx.doi.org/10.1007/s00454-010-9285-9

	Following a curve with the discrete Fréchet distance
	1 Introduction
	2 Background
	3 Discrete set-chain matching
	4 Set-chain matching with T=|Q| (NSMC)
	5 Set-chain matching with T=|S'| (NSMS)
	6 Unique set-chain matching (USM)
	6.1 Choices and chains
	6.2 The variable gadget
	6.3 The clause gadget
	6.4 Connecting the gadgets
	6.5 The reduction

	7 Conclusion
	Acknowledgements
	References

